Skip to main content
Log in

A “bird nest” bioinspired strategy deployed for inducing cellulose gelation without concomitant dissolution

Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Albeit the abundance, renewability, and biodegradability of the polymer known as cellulose, the insolubility and poor dispersibility in most common organic solvents make it incredibly difficult to facilitate conversion into hydrogels without concomitant dissolution. It is known that Swift family birds construct strong and sturdy nests with saliva that acts to bind fibers and twigs. Inspired by this charming hierarchical architecture, protonated carboxymethyl cellulose and cellulose were exploited as “saliva” and “twigs,” respectively, and by a combination of freeze–thaw treatments, cellulose hydrogels can be successfully induced without pre-dissolution representing a striking advancement over what is currently known or predicted. The gel materials displayed considerable increases in storage modulus, viscoelastic behaviors, and thermal stability as the cellulose content increases and exhibited unique omniphilic behaviors. Moreover, this bioinspired strategy is much more universal than originally surmised as found by the gelation of bamboo fibers (additionally containing lignin and hemicellulose), illustrative of the versatility. As a bio-inspired strategy, the current work is the first report on a straightforward, simple, green, yet effective gelation protocol to prepare cellulose-based soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohyd Polym 84(1):40–53

    CAS  Google Scholar 

  2. Li L, Wang L, Zhao X, Wei T, Wang H, Li X et al (2020) Excellent low-temperature formaldehyde decomposition performance over Pt nanoparticles directly loaded on cellulose triacetate. Ind Eng Chem Res 59(50):21720–21728

    CAS  Google Scholar 

  3. Zhang Z, Whitten DG, Kell A (2022) Fluorescent cellulose wipe as a new and sustainable light-activated antibacterial and antiviral agent. ACS Mater Lett 4(2):356–362

    CAS  Google Scholar 

  4. Zhang Z, Abidi N, Lucia L, Chabi S, Denny CT, Parajuli P et al (2023) Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: a mini-review and perspective. Carbohyd Polym 299:120140

    CAS  Google Scholar 

  5. Wang C, Chai Y, Wen X, Ai Y, Zhao H, Hu W et al (2021) Stretchable and anisotropic conductive composite hydrogel as therapeutic cardiac patches. ACS Mater Lett 3(8):1238–1248

    CAS  Google Scholar 

  6. Zhang Z, Lucia L (2021) Toward synergistic reinforced graphene nanoplatelets composite hydrogels with self-healing and multi-stimuli responses. Polymer 234:124228

    CAS  Google Scholar 

  7. Wang T, Wusigale Kuttappan D, Amalaradjou MA, Luo Y, Luo Y (2021) Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Adv Compos Hybrid Mater 4(3):696–706

    CAS  Google Scholar 

  8. Wang Z, Li R, Zhang J (2022) On-demand drug delivery of triptolide and celastrol by poly(lactic-co-glycolic acid) nanoparticle/triglycerol monostearate-18 hydrogel composite for rheumatoid arthritis treatment. Adv Compos Hybrid Mater 5(4):2921–2935

    CAS  Google Scholar 

  9. Bakadia BM, Zhong A, Li X, Boni BOO, Ahmed AAQ, Souho T et al (2022) Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Adv Compos Hybrid Mater 5(4):2847–2872

    CAS  Google Scholar 

  10. Zhang F, Lian M, Alhadhrami A, Huang M, Li B, Mersal GAM et al (2022) Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water. Adv Compos Hybrid Mater 5(3):1852–1864

    CAS  Google Scholar 

  11. Liu J, Chen E, Wu Y, Yang H, Huang K, Chang G et al (2022) Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv Compos Hybrid Mater 5(2):1196–1205

    CAS  Google Scholar 

  12. Kong D, El-Bahy ZM, Algadi H, Li T, El-Bahy SM, Nassan MA et al (2022) Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater 5(3):1976–1987

    CAS  Google Scholar 

  13. Cheng K, Zou L, Chang B, Liu X, Shi H, Li T et al (2022) Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv Compos Hybrid Mater 5(4):2834–2846

    CAS  Google Scholar 

  14. Zhang D, Zhang M, Wang J, Sun H, Liu H, Mi L et al (2022) Impedance response behavior and mechanism study of axon-like ionic conductive cellulose-based hydrogel strain sensor. Adv Compos Hybrid Mater 5(3):1812–1820

    CAS  Google Scholar 

  15. Liu X, Wu Z, Jiang D, Guo N, Wang Y, Ding T et al (2022) A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca2+-SA and glycerol-PVA double physically cross-linked networks. Adv Compos Hybrid Mater 5(3):1712–1729

    CAS  Google Scholar 

  16. Fu L-H, Qi C, Ma M-G, Wan P (2019) Multifunctional cellulose-based hydrogels for biomedical applications. J Mater Chem B 7(10):1541–1562

    CAS  Google Scholar 

  17. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R (2021) Preparation of cellulose-based hydrogel: a review. J Market Res 10:935–952

    CAS  Google Scholar 

  18. Yang Z, Han L, Fu X, Wang Y, Huang H, Xu M (2022) Double-safety flexible supercapacitor basing on zwitterionic hydrogel: over-heat alarm and flame-retardant electrolyte. Adv Compos Hybrid Mater 5(3):1876–1887

    CAS  Google Scholar 

  19. Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Coll Interface Sci 222:502–508

    CAS  Google Scholar 

  20. Zhang J, Qi Y, Yongfeng S, Li H (2021) Research progress on chemical modification and application of cellulose: a review. Mater Sci 28:X

  21. Dutta S, Lim K-T (2019) Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 9:19143–19162

    Google Scholar 

  22. Mai X, Mai J, Liu H, Liu Z, Wang R, Wang N et al (2022) Advanced bamboo composite materials with high-efficiency and long-term anti-microbial fouling performance. Adv Compos Hybrid Mater 5(2):864–871

    CAS  Google Scholar 

  23. Zhu E-Q, Xu G-F, Ye X-Y, Yang J, Yang H-Y, Wang D-W et al (2021) Preparation and characterization of hydrothermally pretreated bamboo powder with improved thermoplasticity by propargyl bromide modification in a heterogeneous system. Adv Compos Hybrid Mater 4(4):1059–1069

    CAS  Google Scholar 

  24. Yan J, Niu Y, Wu C, Shi Z, Zhao P, Naik N et al (2021) Antifungal effect of seven essential oils on bamboo. Adv Compos Hybrid Mater 4(3):552–561

    CAS  Google Scholar 

  25. Zhu E-Q, Xu G-F, Sun S-F, Yang J, Yang H-Y, Wang D-W et al (2021) Rosin acid modification of bamboo powder and thermoplasticity of its products based on hydrothermal pretreatment. Adv Compos Hybrid Mater 4(3):584–590

    CAS  Google Scholar 

  26. Zhang H, Zhong J, Liu Z, Mai J, Liu H, Mai X (2021) Dyed bamboo composite materials with excellent anti-microbial corrosion. Adv Compos Hybrid Mater 4(2):294–305

    CAS  Google Scholar 

  27. Lack D (1956) A Review of the Genera and Nesting Habits of Swifts. Auk 73(1):1–32

    Google Scholar 

  28. Dong X, Liu J, Hao R, Guo A, Hou Z, Liu M (2013) High-temperature elasticity of fibrous ceramics with a bird’s nest structure. J Eur Ceram Soc 33(15):3477–3481

    CAS  Google Scholar 

  29. Gao Y, Zhang Y, Ma Y (2022) Bio-inspired hierarchical porous activated carbon aerogel from waste corrugated cardboard for adsorption of oxytetracycline from water. Biomass Convers Biorefin 

  30. Bui V-T, Oh J-H, Kim J-N, Zhou Q, Huynh DP, Oh I-K (2020) Nest-inspired nanosponge-Cu woven mesh hybrid for ultrastable and high-power triboelectric nanogenerator. Nano Energy 71:104561

    CAS  Google Scholar 

  31. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polymer J 46(1):92–100

    CAS  Google Scholar 

  32. Mallakpour S, Tukhani M, Hussain CM (2021) Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: utilization in tissue engineering. Adv Coll Interface Sci 292:102415

    CAS  Google Scholar 

  33. Zhao Q, Qian J, An Q, Gui Z, Jin H, Yin M (2009) Pervaporation dehydration of isopropanol using homogeneous polyelectrolyte complex membranes of poly(diallyldimethylammonium chloride)/sodium carboxymethyl cellulose. J Membr Sci 329(1):175–182

    CAS  Google Scholar 

  34. Yadav I, Rathnam VSS, Yogalakshmi Y, Chakraborty S, Banerjee I, Anis A et al (2017) Synthesis and characterization of polyvinyl alcohol- carboxymethyl tamarind gum based composite films. Carbohyd Polym 165:159–168

    CAS  Google Scholar 

  35. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press

    Google Scholar 

  36. Alonso E, Faria M, Mohammadkazemi F, Resnik M, Ferreira A, Cordeiro N (2018) Conductive bacterial cellulose-polyaniline blends: influence of the matrix and synthesis conditions. Carbohyd Polym 183:254–262

    CAS  Google Scholar 

  37. Djemaa IB, Auguste S, Drenckhan-Andreatta W, Andrieux S (2021) Hydrogel foams from liquid foam templates: properties and optimisation. Adv Coll Interface Sci 294:102478

    CAS  Google Scholar 

  38. Barcan GA, Zhang X, Waymouth RM (2015) Structurally dynamic hydrogels derived from 1,2-dithiolanes. J Am Chem Soc 137(17):5650–5653

    CAS  Google Scholar 

  39. Georgiopoulos P, Kontou E, Christopoulos A (2015) Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers. Compos B Eng 80:134–144

    CAS  Google Scholar 

  40. Kaufman JD, Miller GJ, Morgan EF, Klapperich CM (2008) Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression. J Mater Res 23(5):1472–1481

    CAS  Google Scholar 

  41. Yang J-L, Zhang Z, Schlarb AK, Friedrich K (2006) On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer 47(19):6745–6758

    CAS  Google Scholar 

  42. Michelin M, Marques AM, Pastrana LM, Teixeira JA, Cerqueira MA (2020) Carboxymethyl cellulose-based films: effect of organosolv lignin incorporation on physicochemical and antioxidant properties. J Food Eng 285:110107

    CAS  Google Scholar 

  43. Layek RK, Kundu A, Nandi AK (2013) High-performance nanocomposites of sodium carboxymethylcellulose and graphene oxide. Macromol Mater Eng 298(11):1166–1175

    CAS  Google Scholar 

  44. Guo T, Gu L, Zhang Y, Chen H, Jiang B, Zhao H et al (2019) Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. J Mater Chem A 7(23):14033–14041

    CAS  Google Scholar 

  45. Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohyd Polym 111:456–462

    CAS  Google Scholar 

  46. Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS (2007) Regenerated-cellulose/multiwalled- carbon-nanotube composite fibers with enhanced mechanical properties prepared with the Ionic Liquid 1-Allyl-3-methylimidazolium Chloride. Adv Mater 19(5):698–704

    CAS  Google Scholar 

  47. Roy S, Rhim J-W (2020) Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol 148:666–676

    CAS  Google Scholar 

  48. Liao Z, Zhou X, Wei G, Wang S, Gao C, Wang L (2022) Intrinsically self-healable and wearable all-organic thermoelectric composite with high electrical conductivity for heat harvesting. ACS Appl Mater Interfaces 14(38):43421–43430

    CAS  Google Scholar 

  49. Thien DVH, Lam D-N, Diem HN, Pham TYN, Bui NQ, Truc TNT et al (2022) Synthesis of cellulose-g-poly(acrylic acid) with high water absorbency using pineapple-leaf extracted cellulose fibers. Carbohyd Polym 288:119421

    CAS  Google Scholar 

  50. Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics. Langmuir 24(15):8036–8044

    CAS  Google Scholar 

  51. Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohyd Polym 100:9–16

    CAS  Google Scholar 

  52. Hatakeyema T, Uno J, Yamada C, Kishi A, Hatakeyama H (2005) Gel–sol transition of poly(vinyl alcohol) hydrogels formed by freezing and thawing. Thermochim Acta 431(1):144–148

    CAS  Google Scholar 

  53. Zhang C, Mcadams DA II, Grunlan JC (2016) Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv Mater 28(30):6292–6321

    CAS  Google Scholar 

  54. Bhosale Y, Weiner N, Butler A, Kim SH, Gazzola M, King H (2022) Micromechanical origin of plasticity and hysteresis in nestlike packings. Phys Rev Lett 128(19):198003

    CAS  Google Scholar 

  55. Song Pa XuZ, Guo Q (2013) Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly. ACS Macro Lett 2(12):1100–1104

    Google Scholar 

  56. Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26(20):6016–6025

    CAS  Google Scholar 

  57. Li A, Sun H-X, Tan D-Z, Fan W-J, Wen S-H, Qing X-J et al (2011) Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci 4(6):2062–2065

    CAS  Google Scholar 

  58. Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J et al (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3(6):332–336

    CAS  Google Scholar 

  59. Choi S-J, Kwon T-H, Im H, Moon D-I, Baek DJ, Seol M-L et al (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3(12):4552–4556

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to the Fiber and Biopolymer Research Institute at Texas Tech University for its financial support to continue the research work and special gratitude to the “Laboratory of Soft Materials & Green Chemistry” at NC State University for the genesis of this idea.

Funding

This work received partial financial support from Texas State Support Committee (Agreement #17-512TX).

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Conceptualization, Methodology, Investigation, Writing – original draft. NA: Methodology, Writing – review & editing, Project administration. LAL: Methodology, Writing – review & editing. SY: Investigation.

Corresponding authors

Correspondence to Zhen Zhang, Noureddine Abidi or Lucian A. Lucia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2290 KB)

Supplementary file2 (MP4 3057 KB)

Supplementary file3 (MP4 2614 KB)

Supplementary file4 (DOCX 438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Abidi, N., Lucia, L.A. et al. A “bird nest” bioinspired strategy deployed for inducing cellulose gelation without concomitant dissolution. Adv Compos Hybrid Mater 6, 178 (2023). https://doi.org/10.1007/s42114-023-00745-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00745-x

Keywords

Navigation