Skip to main content

Advertisement

Log in

Fabrication of environmentally, high-strength, fire-retardant biocomposites from small-diameter wood lignin in situ reinforced cellulose matrix

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

An efficient way to alleviate the pollution imposed by petroleum-based supplies like synthetic fibres and plastics is to prepare biocomposites from recyclable forestry waste with a continuous supply. Despite this, it remains a significant challenge in the field of wood-based panel manufacturing to produce high-performance yet environmentally friendly wood-based materials without the addition of chemical adhesives. Lignin can be used as a “natural adhesive” due to its superior bonding properties, but the dispersion of hemicellulose affects cross-linking at the interfacial interface negatively. This study used lignin/cellulose as a matrix and pretreated it with hydrogen peroxide, sodium hydroxide, sodium silicate solution and in situ bonding of wood fibres to create a high-performance biocomposite material for potential mass production. The findings revealed the tensile (106.63 MPa) and bending strengths (148.78 MPa) of the optimised samples were 125.37% and 91.40% higher than the performance before optimisation. Moreover, the biocomposite demonstrated remarkable hydrophobicity, as evidenced by a water contact angle of 99.96°, and exhibited high thermal stability, without any disintegration observed even when subjected to combustion at 1300 °C. These exceptional properties and advantages render it a highly desirable material for eco-friendly homes and construction applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Juliebz P (2020) Designing for a green chemistry future. Science 367:397–400. https://doi.org/10.1126/science.aay3060

    Article  CAS  Google Scholar 

  2. Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn SJ, Hu L (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  3. Li R, Wang Q, Qu G, Zhang Z, Wang H (2023) Green utilization of organic waste resource. Environ Sci Pollut R 1–3. https://doi.org/10.1007/s11356-022-25127-6

  4. Pramreiter M, Nenning T, Malzl L, Konnerth J (2023) A plea for the efficient use of wood in construction. Nat Rev Mater 1–2. https://doi.org/10.1038/s41578-023-00534-4

  5. Xu Y, Zhang X, Liu Z, Zhang X, Luo J, Li J, Shi SQ, Li J, Gao Q (2022) Constructing SiO2 nanohybrid to develop a strong soy protein adhesive with excellent flame-retardant and coating ability. Chem Eng J 446:137065. https://doi.org/10.1016/j.cej.2022.137065

    Article  CAS  Google Scholar 

  6. Zeng Y, Yang W, Xu P, Cai X, Dong W, Chen M, Du M, Liu T, Lemstra PJ, Ma P (2022) The bonding strength, water resistance and flame retardancy of soy protein-based adhesive by incorporating tailor-made core-shell nanohybrid compounds. Chem Eng J 428:132390. https://doi.org/10.1016/j.cej.2021.132390

    Article  CAS  Google Scholar 

  7. Li T, Chen C, Brozena AH, Zhu JY, Xu L, Driemeier C, Dai J, Rojas OJ, Isogai A, Wagberg L, Hu L (2021) Developing fibrillated cellulose as a sustainable technological material. Nature 590:47–56. https://doi.org/10.1038/s41586-020-03167-7

    Article  CAS  Google Scholar 

  8. Chen C, Wu Q, Wan Z, Yang Q, Xu Z, Li D, Jin Y, Rojas OJ (2022) Mildly processed chitin used in one-component drinking straws and single use materials: strength, biodegradability and recyclability. Chem Eng J 442. https://doi.org/10.1016/j.cej.2022.136173

  9. Cottet C, Ramirez-Tapias YA, Delgado JF, de la Osa O, Salvay AG, Peltzer MA (2020) Biobased materials from microbial biomass and its derivatives. Materials 13. https://doi.org/10.3390/ma13061263

  10. Yang Y, Zhang L, Zhang J, Ren Y, Huo H, Zhang X, Huang K, Zhang Z (2023) Reengineering waste boxwood powder into light and high-strength biodegradable composites to replace petroleum-based synthetic materials. ACS Appl Mater Interfaces 15(3):4505–4515. https://doi.org/10.1021/acsami.2c19844

    Article  CAS  Google Scholar 

  11. Jiang Z, Ho SH, Wang X, Li Y, Wang C (2021) Application of biodegradable cellulose-based biomass materials in wastewater treatment. Environ Pollut 290:118087. https://doi.org/10.1016/j.envpol.2021.118087

    Article  CAS  Google Scholar 

  12. Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL (2022) Fiber-based biopolymer processing as a route toward sustainability. Adv Mater 34:e2105196. https://doi.org/10.1002/adma.202105196

    Article  CAS  Google Scholar 

  13. Li YE (2019) Sustainable Biomass Materials for Biomedical Applications. ACS Biomater Sci Eng 5:2079–2092. https://doi.org/10.1021/acsbiomaterials.8b01634

    Article  CAS  Google Scholar 

  14. Veerasimman A, Shanmugam V, Rajendran S, Johnson DJ, Subbiah A, Koilpichai J, Marimuthu U (2021) Thermal properties of natural fiber sisal based hybrid composites - a brief review. J Nat Fibers 1–11. https://doi.org/10.1080/15440478.2020.1870619

  15. Vigneshwaran S, Sundarakannan R, John KM, Joel Johnson RD, Prasath KA, Ajith S, Arumugaprabu V, Uthayakumar M (2020) Recent advancement in the natural fiber polymer composites: a comprehensive review. J Clean Prod 277. https://doi.org/10.1016/j.jclepro.2020.124109

  16. Xu J, Li X, Liu R, Shang Z, Long L, Qiu H, Ni Y (2020) Dialdehyde modified cellulose nanofibers enhanced the physical properties of decorative paper impregnated by aldehyde-free adhesive. Carbohyd Polym 250:116941. https://doi.org/10.1016/j.carbpol.2020.116941

    Article  CAS  Google Scholar 

  17. Koch SM, Pillon M, Keplinger T, Dreimol CH, Weinkötz S, Burgert I (2022) Intercellular matrix infiltration improves the wet strength of delignified wood composites. ACS Appl Mater Interfaces 14:31216–31224. https://doi.org/10.1021/acsami.2c04014

    Article  CAS  Google Scholar 

  18. Zhang Y, Xu N, Bai Y, Liu J, Guo Z, Niu Y (2022) Comparison of multidimensional mass transfer models of formaldehyde emissions originating from different surfaces of wood-based panels. Sci Total Environ 848:157367. https://doi.org/10.1016/j.scitotenv.2022.157367

    Article  CAS  Google Scholar 

  19. Cai J, Murugadoss V, Jiang J, Gao X, Lin Z, Huang M, Guo J, Alsareii S, Algadi H, Kathiresan M (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater 5:641–650. https://doi.org/10.1007/s42114-022-00473-8

    Article  CAS  Google Scholar 

  20. Etale A, Onyianta AJ, Turner SR, Eichhorn SJ (2023) Cellulose: a review of water interactions, applications in composites, and water treatment. Chem Rev. https://doi.org/10.1021/acs.chemrev.2c00477

    Article  Google Scholar 

  21. Diblasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust 34:47–90. https://doi.org/10.1016/j.pecs.2006.12.001

    Article  CAS  Google Scholar 

  22. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, Shi SQ, Nie X, Qiu Y, Li D, Wu Q, Tsang DCW, Peng W, Sonne C (2020) Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater Interfaces 12:30824–30832. https://doi.org/10.1021/acsami.0c07448

    Article  CAS  Google Scholar 

  23. Ge S, Zuo S, Zhang M, Luo Y, Yang R, Wu Y, Zhang Y, Li J, Xia C (2021) Utilization of decayed wood for polyvinyl chloride/wood flour composites. J Mater Res Technol 62–9. https://doi.org/10.1016/j.jmrt.2021.03.026

  24. Ge S, Liang Y, Zhou C, Sheng Y, Zhang M, Cai L, Zhou Y, Huang Z, Manzo M, Wu C, Xia C (2022) The potential of Pinus armandii Franch for high-grade resource utilization. Biomass Bioenergy 158. https://doi.org/10.1016/j.biombioe.2022.106345

  25. Xia Q, Chen C, Yao Y, He S, Wang X, Li J, Gao J, Gan W, Jiang B, Cui M (2021) In situ lignin modification toward photonic wood. Adv Mater 33:2001588. https://doi.org/10.1002/adma.202001588

    Article  CAS  Google Scholar 

  26. Chu T, Gao Y, Yi L, Fan C, Yan L, Ding C, Liu C, Huang Q, Wang Z (2022) Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv Compos Hybrid Mater 5:1821–1829. https://doi.org/10.1007/s42114-022-00440-3

    Article  CAS  Google Scholar 

  27. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  28. Li P, Zhang Y, Zuo Y, Lu J, Yuan G, Wu Y (2020) Preparation and characterization of sodium silicate impregnated Chinese fir wood with high strength, water resistance, flame retardant and smoke suppression. J Mater Res Technol 9(1):1043–1053. https://doi.org/10.1016/j.jmrt.2019.10.035

    Article  CAS  Google Scholar 

  29. Liu Q, Chai Y, Ni L, Lyu W (2020) Flame retardant properties and thermal decomposition kinetics of wood treated with boric acid modified silica sol. Materials 13(20):4478. https://doi.org/10.3390/ma13204478

    Article  CAS  Google Scholar 

  30. Ren Y, Yang Y, Zhang J, Ge S, Ye H, Shi Y, Xia C, Sheng Y, Zhang Z (2022) Innovative conversion of pretreated Buxus sinica into high-performance biocomposites for potential use as furniture material. ACS Appl Mater Interfaces 14:47176–47187. https://doi.org/10.1021/acsami.2c15649

    Article  CAS  Google Scholar 

  31. Ji X, Dong Y, Nguyen TT, Chen X, Guo M (2018) Environment-friendly wood fibre composite with high bonding strength and water resistance. R Soc Open Sci 5:172002. https://doi.org/10.1098/rsos.172002

    Article  CAS  Google Scholar 

  32. Jiang B, Chen C, Liang Z, He S, Kuang Y, Song J, Mi R, Chen G, Jiao M, Hu L (2019) Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv Funct Mater 30. https://doi.org/10.1002/adfm.201906307

  33. Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J (2019) A radiative cooling structural material. Science 364:760–763. https://doi.org/10.1126/science.aau9101

    Article  CAS  Google Scholar 

  34. Li K, Wang S, Chen H, Yang X, Berglund LA, Zhou Q (2020) Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv Mater 32:2003653. https://doi.org/10.1002/adma.202003653

    Article  CAS  Google Scholar 

  35. Li L, Sun J, Jia G (2012) Properties of natural cotton stalk bark fiber under alkali treating. J Appl Polym Sci 125:E534–E539. https://doi.org/10.1002/app.36987

    Article  CAS  Google Scholar 

  36. Yang Y, Ren Y, Ge S, Ye H, Shi Y, Xia C, Sheng Y, Zhang Z (2022) Transformation of Buxus sinica into high-quality biocomposites via an innovative and environmentally-friendly physical approach. Appl Surf Sci 606:154595. https://doi.org/10.1016/j.apsusc.2022.154595

    Article  CAS  Google Scholar 

  37. Kaffashsaie E, Yousefi H, Nishino T, Matsumoto T, Mashkour M, Madhoushi M, Kawaguchi H (2021) Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers. Carbohyd Polym 262. https://doi.org/10.1016/j.carbpol.2021.117938

  38. Khoo SC, Peng WX, Yang Y, Ge SB, Soon CF, Ma NL, Sonne C (2020) Development of formaldehyde-free bio-board produced from mushroom mycelium and substrate waste. J Hazard Mater 400:123296. https://doi.org/10.1016/j.jhazmat.2020.123296

    Article  CAS  Google Scholar 

  39. Mi R, Chen C, Keplinger T, Pei Y, He S, Liu D, Li J, Dai J, Hitz E, Yang B (2020) Scalable aesthetic transparent wood for energy efficient buildings. Nat commun 11:3836. https://doi.org/10.1038/s41467-020-17513-w

    Article  CAS  Google Scholar 

  40. Kang X, Lu Z, Feng W, Wang J, Fang X, Xu Y, Wang Y, Liu B, Ding T, Ma Y (2021) A novel phosphorous and silicon-containing benzoxazine: highly efficient multifunctional flame-retardant synergist for polyoxymethylene. Adv Compos Hybrid Mater 4:127–137. https://doi.org/10.1007/s42114-020-00198-6

    Article  CAS  Google Scholar 

  41. Xu D, Huang Q, Shi Z, Chen Y, Guo L, Wang C, Liu C (2023) Polypyrrole nanotube derived flame-retardant substrate of cellulose nanofiber composites with thermal conductive and electromagnetic interference shielding effect. Composites Communications 38:101507. https://doi.org/10.1016/j.coco.2023.101507

    Article  Google Scholar 

  42. Meng X, Fan W, Wan Mahari WA, Ge S, Xia C, Wu F, Han L, Wang S, Zhang M, Hu Z, Ma NL, Van Le Q, Lam SS (2021) Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials. J Clean Prod 281. https://doi.org/10.1016/j.jclepro.2020.125321

  43. Migneault S, Koubaa A, Perré P, Riedl B (2015) Effects of wood fiber surface chemistry on strength of wood-plastic composites. Appl Surf Sci 343:11–18. https://doi.org/10.1016/j.apsusc.2015.03.010

    Article  CAS  Google Scholar 

  44. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  45. NagarajaGanesh B, Ganeshan P, Ramshankar P, Raja K (2019) Assessment of natural cellulosic fibers derived from Senna auriculata for making light weight industrial biocomposites. Ind Crop Prod 139. https://doi.org/10.1016/j.indcrop.2019.111546

  46. Fan Q, Ou R, Hao X, Deng Q, Liu Z, Sun L, Zhang C, Guo C, Bai X, Wang Q (2022) Water-induced self-assembly and in situ mineralization within plant phenolic glycol-gel toward ultrastrong and multifunctional thermal insulating aerogels. ACS Nano 16:9062–9076. https://doi.org/10.1021/acsnano.2c00755

    Article  CAS  Google Scholar 

  47. Nasution H, Olaiya NG, Haafiz MKM, Abdullah CK, Bakar SA, Olaiya FG, Mohamed A, HPS AK (2021) The role of amphiphilic chitosan in hybrid nanocellulose-reinforced polylactic acid biocomposite. Polym Advan Technol 32:3446–3457. https://doi.org/10.1002/pat.5355

    Article  CAS  Google Scholar 

  48. Nishiyama Y, Wada M, Hanson BL, Langan P (2010) Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I. Cellulose 17:735–745. https://doi.org/10.1007/s10570-010-9415-9

    Article  CAS  Google Scholar 

  49. Xia Q, Chen C, Li T, He S, Gao J, Wang X, Hu L (2021) Solar-assisted fabrication of large-scale, patternable transparent wood. Sci adv 7(5):7342–7369. https://doi.org/10.1126/sciadv.abd7342

    Article  CAS  Google Scholar 

  50. Panaitescu DM, Frone AN, Chiulan I, Casarica A, Nicolae CA, Ghiurea M, Trusca R, Damian CM (2016) Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route. Mater Design 110:790–801. https://doi.org/10.1016/j.matdes.2016.08.052

    Article  CAS  Google Scholar 

  51. Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste UH, Bruck HA, Zhu JY, Vellore A, Li H, Minus ML, Jia Z, Martini A, Li T, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228. https://doi.org/10.1038/nature25476

    Article  CAS  Google Scholar 

  52. Holtman KM, Hm C, Jameel H, Kadla JF (2006) Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques. J Wood Chem Technol 26:21–34. https://doi.org/10.1080/02773810600582152

    Article  CAS  Google Scholar 

  53. Mao JD, Holtman KM, Scott JT, Kadla JF (2006) Schmidt R K (2006) Differences between lignin in unprocessed wood, milled wood, mutant wood, and extracted lignin detected by 13C solid-state NMR. J Agric Food Chem 54(26):9677–9686. https://doi.org/10.1021/jf062199q

    Article  CAS  Google Scholar 

  54. Santoni I, Callone E, Sandak A, Sandak J, Dirè S (2015) Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohyd Polym 117:710–721. https://doi.org/10.1016/j.carbpol.2014.10.057

    Article  CAS  Google Scholar 

  55. Focher B, Palma M, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, Vib Spectrosc and X-ray diffractometry. Ind Crop Prod 13:193–208. https://doi.org/10.1016/s0926-6690(00)00077-7

    Article  CAS  Google Scholar 

  56. Garemark J, Perea-Buceta JE, Felhofer M, Chen B, Cortes Ruiz MF, Sapouna I, Gierlinger N, Kilpeläinen IA, Berglund LA, Li Y (2023) Strong, shape-memory lignocellulosic aerogel via wood cell wall nanoscale reassembly. ACS Nano. https://doi.org/10.1021/acsnano.2c11220

    Article  Google Scholar 

  57. Kaschuk JJ, Al Haj Y, Rojas OJ, Miettunen K, Abitbol T, Vapaavuori J (2022) Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Adv Mater 34:2104473. https://doi.org/10.1002/adma.202104473

    Article  CAS  Google Scholar 

  58. Li T, Song J, Zhao X, Yang Z, Pastel G, Xu S, Jia C, Dai J, Chen C, Gong A (2018) Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci Adv 4(3):3724. https://doi.org/10.1126/sciadv.aar3724

    Article  CAS  Google Scholar 

  59. Zhang H, Liu P, Musa SM, Mai C, Zhang K (2019) Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustainable Chem Eng 7:10452–10459. https://doi.org/10.1021/acssuschemeng.9b00801

    Article  CAS  Google Scholar 

  60. Ye H, Wang Y, Yu Q, Ge S, Fan W, Zhang M, Huang Z, Manzo M, Cai L, Wang L, Xia C (2022) Bio-based composites fabricated from wood fibers through self-bonding technology. Chemosphere 287:132436. https://doi.org/10.1016/j.chemosphere.2021.132436

    Article  CAS  Google Scholar 

  61. Xiao S, Chen C, Xia Q, Liu Y, Yao Y, Chen Q, Hartsfield M, Brozena A, Tu K, Eichhorn SJ (2021) Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374:465–471. https://doi.org/10.1126/science.abg9556

    Article  CAS  Google Scholar 

  62. Duan H, Zhuang C, Mei F, Zeng C, Pashameah RA, Huang M, Alzahrani E, Gao J, Han Y, Yu Q (2022) Benzyl (4-fluorophenyl) phenylphosphine oxide-modified epoxy resin with improved flame retardancy and dielectric properties. Adv Compos Hybrid Mater 5:776–787. https://doi.org/10.1007/s42114-022-00491-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hebei Provincial Scientific Research Project for Introducing of National High-level Innovative Talents (2021HBQZYCXY011), Hunan Province Key R&D (2022NK2043), The Hunan Provincial Science and Technology Innovation Leaders (2021RC4033) and The Science and Technology Talent Support Project of Hunan Province (CN) (2020TJ-Q18).

Funding

Hunan Province Key R&D (2022NK2043), The Hunan Provincial Science and Technology Innovation Leaders (2021RC4033) and The Science and Technology Talent Support Project of Hunan Province (CN) (2020TJ-Q18).

Author information

Authors and Affiliations

Authors

Contributions

Yang Yang, Lei Zhang and JiJuan Zhang wrote and revised the main manuscript text. Yi Ren, HongFei Huo and Mashallah Rezakazemi prepared all the figures. Xu Zhang and Kai Huang edited the main manuscript text. Zhongfeng Zhang revised and supported funding. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhongfeng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, L., Zhang, J. et al. Fabrication of environmentally, high-strength, fire-retardant biocomposites from small-diameter wood lignin in situ reinforced cellulose matrix. Adv Compos Hybrid Mater 6, 140 (2023). https://doi.org/10.1007/s42114-023-00721-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00721-5

Keywords

Navigation