Skip to main content

Advertisement

Log in

Mixed perovskites (2D/3D)-based solar cells: a review on crystallization and surface modification for enhanced efficiency and stability

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Solar cells based on a three-dimensional (3D) crystalline perovskite framework exhibit desired photoconversion efficiency. However, 3D perovskites are prone to surface defects, leading to severe Shockley–Read–Hall (SRH) recombination and insufficient interactions between components, resulting in lower efficiency and stability. In contrast, two-dimensional (2D) perovskites have comparatively better excellent stability in hot and humid environments but suffer from lower efficiency. Recently, researchers reported that surface passivation of 3D perovskite by 2D perovskite improves the stability of solar cells without compromising their efficiency. In this review, the recent advances in surface modification of three-dimensional perovskites using two-dimensional perovskites are discussed. The crystal structures, photoelectric properties, and surface passivation strategies of 2D/3D perovskite solar cells with different components are systematically presented. Finally, the prospect of using two-dimensional perovskite passivation technology to further improve photovoltaic performance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  2. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf#opennewwindow

  3. Chen Y, Wu S, Li X, Liu M, Chen Z, Zhang P, Li S (2022) Efficient and stable low-cost perovskite solar cells enabled by using surface passivated carbon as the counter electrode. J Mater Chem C 10(4):1270–1275. https://doi.org/10.1039/d1tc05351e

    Article  CAS  Google Scholar 

  4. Zhang P, Chen Y, Wu S, Li X, Liu M, Li S (2021) Enhancing the performance of n-i-p perovskite solar cells by introducing hydroxyethylpiperazine ethane sulfonic acid for interfacial adjustment. Nanoscale 14(1):35–41. https://doi.org/10.1039/d1nr05939d

    Article  CAS  Google Scholar 

  5. Xu Z, Zhou X, Li X, Zhang P (2022) Polymer‐regulated SnO2 composites electron transport layer for high‐efficiency n–i–p perovskite solar cells. Solar RRL 6(8). https://doi.org/10.1002/solr.202200092

  6. Xu Z,Ng CH, Zhou X,  Li X,  Zhang P,  Teo SH. Polymer-complexed SnO2 Electron Transport Layer for High-Efficiency n-i-p Perovskite Solar Cells, Nanoscale, 2022, 14, 12090-12098 https://doi.org/10.1039/D2NR03754H

    Article  CAS  Google Scholar 

  7. Li X, Wu S, Chen Y,  Tang J,  Liu M,   Chen Z,  Zhang P,   Li S. Grain Boundary Defect Controlling of Perovskite via N-hydroxysuccinimide-post-treatment Process in Efficient and Stable n-i-p Perovskite Solar Cells, Solar RRl, 2022. 6. 2200502. https://doi.org/10.1002/solr.202200502

    Article  CAS  Google Scholar 

  8. He B, Xu Y, Zhu J, Zhang X (2021) Effects of the doping density of charge-transporting layers on regular and inverted perovskite solar cells: numerical simulations. Adv Compos Hybrid Mater 4:1146–1154. https://doi.org/10.1007/s42114-021-00343-9

    Article  CAS  Google Scholar 

  9. Guo Y, Liu T, He H, Wang N (2022) Bifunctional interface modification for efficient and UV-robust α-Fe2O3-based planar organic–inorganic hybrid perovskite solar cells. Adv Compos Hybrid Mater 5:3212–3222. https://doi.org/10.1007/s42114-022-00484-5

    Article  CAS  Google Scholar 

  10. Murugadoss V, Kang DY, Lee WJ, Jang G, Kim TG (2022) Fluorine-induced surface modification to obtain stable and low energy loss zinc oxide/perovskite interface for photovoltaic application. Adv Compos Hybrid Mater 5:1385–1395. https://doi.org/10.1007/s42114-022-00498-z

    Article  CAS  Google Scholar 

  11. Wang Z, Yang M, Xie X, Yu C, Jiang Q, Huang M, Algadi H, Guo Z, Zhang H (2022) Applications of machine learning in perovskite materials. Adv Compos Hybrid Mater 5: 2700–2720. https://doi.org/10.1007/s42114-022-00560-w

  12. Xu Z, Zhou X, Li X, Li H, Algadi H, Zhang P (2023) Buried-in interface with two-terminal functional groups for perovskite-based photovoltaic solar cells. Adv Compos Hybrid Mater 6(2):66. https://doi.org/10.1007/s42114-023-00646-z

  13. Li X, Cuthriell SA, Bergonzoni A, Dong H, Traoré B, Stoumpos CC, Guo P, Even J, Katan C, Schaller RD, Kanatzidis MG (2022) Expanding the cage of 2d bromide perovskites by large a-site cations. Chem Mater 34(3):1132–1142. https://doi.org/10.1021/acs.chemmater.1c03605

    Article  CAS  Google Scholar 

  14. Tsai H (2022) The challenges and promises of layered 2D perovskites. Chem 8(4):890–891. https://doi.org/10.1016/j.chempr.2022.03.021

    Article  CAS  Google Scholar 

  15. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903. https://doi.org/10.1038/nmat4014

    Article  CAS  Google Scholar 

  16. Li Y, Liang C, Wang G, Li J, Chen S, Yang S, Xing G, Pan H (2020) Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells. Photonics Res 8(10). https://doi.org/10.1364/prj.398529

  17. Cao Y, Liu Z, Li W, Zhao Z, Xiao Z, Lei B, Zi W, Cheng N, Liu J, Tu Y (2021) Efficient and stable MAPbI3 perovskite solar cells achieved via chlorobenzene/perylene mixed anti-solvent. Solar Energy 220:251–257. https://doi.org/10.1016/j.solener.2021.03.055

    Article  Google Scholar 

  18. Shalan AE, Akman E, Sadegh F, Akin S (2021) efficient and stable perovskite solar cells enabled by dicarboxylic acid-supported perovskite crystallization. J Phys Chem Lett 12(3):997–1004. https://doi.org/10.1021/acs.jpclett.0c03566

    Article  CAS  Google Scholar 

  19. Huang Y, Liu T, Wang B, Li J, Li D, Wang G, Lian Q, Amini A, Chen S, Cheng C, Xing G (2021) Antisolvent engineering to optimize grain crystallinity and hole-blocking capability of perovskite films for high-performance photovoltaics. Adv Mater 33(38):e2102816. https://doi.org/10.1002/adma.202102816

  20. Mali SS, Patil JV, Arandiyan H, Hong CK (2019) Reduced methylammonium triple-cation Rb0.05(FAPbI3)0.95(MAPbBr3)0.05 perovskite solar cells based on a TiO2/SnO2 bilayer electron transport layer approaching a stabilized 21% efficiency: the role of antisolvents. J Mater Chem A 7(29):17516–17528. https://doi.org/10.1039/c9ta05422g

  21. Kim SG, Kim JH, Ramming P, Zhong Y, Schotz K, Kwon SJ, Huettner S, Panzer F, Park N G (2021) How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nat Commun 12(1):1554. https://doi.org/10.1038/s41467-021-21803-2

  22. Liu C, Huang L, Zhou X, Wang X, Yao J, Liu Z, Liu SF, Ma W, Xu B (2021) An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Sci Bull 66(14):1419–1428. https://doi.org/10.1016/j.scib.2021.03.018

    Article  CAS  Google Scholar 

  23. Sun J, Li F, Yuan J, Ma W (2021) Advances in metal halide perovskite film preparation: the role of anti‐solvent treatment. Small Methods 5(5). https://doi.org/10.1002/smtd.202100046

  24. Ge S, Zuo S, Zhang M, Luo Y, Yang R, Wu Y, Zhang Y, Li J, Xia C (2021) Utilization of decayed wood for polyvinyl chloride/wood flour composites. J Mater Res Technol 12:862–869. https://doi.org/10.1016/j.jmrt.2021.03.026

    Article  CAS  Google Scholar 

  25. Liu J, Li N, Jia J, Dong J, Qiu Z, Iqbal S, Cao B (2019) Perovskite films grown with green mixed anti-solvent for highly efficient solar cells with enhanced stability. Solar Energy 181:285–292. https://doi.org/10.1016/j.solener.2019.02.020

    Article  CAS  Google Scholar 

  26. Ahmed DS, Mohammed BK, Mohammed MKA (2021) Long-term stable and hysteresis-free planar perovskite solar cells using green antisolvent strategy. J Mater Sci 56(27):15205–15214. https://doi.org/10.1007/s10853-021-06200-w

    Article  CAS  Google Scholar 

  27. Cao X, Hao L, Liu Z, Su G, He X, Zeng Q, Wei J (2022) All green solvent engineering of organic–inorganic hybrid perovskite layer for high-performance solar cells. Chem Eng J 437. https://doi.org/10.1016/j.cej.2022.135458

  28. Wang T, Fu Y, Jin L, Deng S, Pan D, Dong L, Jin S, Huang L (2020) Phenethylammonium functionalization enhances near-surface carrier diffusion in hybrid perovskites. J Am Chem Soc 142(38):16254–16264. https://doi.org/10.1021/jacs.0c04377

    Article  CAS  Google Scholar 

  29. Seitz M, Magdaleno AJ, Alcazar-Cano N, Melendez M, Lubbers TJ, Walraven SW, Pakdel S, Prada E, Delgado-Buscalioni R, Prins F (2020) Exciton diffusion in two-dimensional metal-halide perovskites. Nat Commun 11(1):2035. https://doi.org/10.1038/s41467-020-15882-w

    Article  CAS  Google Scholar 

  30. Chen H, Zhan Y, Xu G, Chen W, Wang S, Zhang M, Li Y, Li Y (2020) Organic N‐type molecule: managing the electronic states of bulk perovskite for high‐performance photovoltaics. Adv Funct Mater 30(36). https://doi.org/10.1002/adfm.202001788

  31. Shen L, Chen R, Zhang D, Yilmazoglu UC, Gu K, Sarmiento JS, Zhu T, Zheng L, Zheng J, Wang H, Liu C, Gong X (2022) High-performance perovskite photovoltaics by heterovalent substituted mixed perovskites. Adv Funct Mater. https://doi.org/10.1002/adfm.202207911

    Article  Google Scholar 

  32. Cao Q, Li P, Chen W, Zang S, Han L, Zhang Y, Song Y (2022) Two-dimensional perovskites: impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43. https://doi.org/10.1016/j.nantod.2022.101394

  33. Zhang F, Zhu K (2021) Breakthrough: phase-pure 2D perovskite films. Joule 5(1):14–15. https://doi.org/10.1016/j.joule.2020.12.006

    Article  Google Scholar 

  34. Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z (2018) 2D Ruddlesden-Popper perovskites for optoelectronics. Adv Mater 30(2). https://doi.org/10.1002/adma.201703487

  35. Shao M, Bie T, Yang L, Gao Y, Jin X, He F, Zheng N, Yu Y, Zhang X (2022) Over 21% Efficiency stable 2D perovskite solar cells. Adv Mater 34(1):e2107211. https://doi.org/10.1002/adma.202107211

  36. Wu G, Liang R, Ge M, Sun G, Zhang Y, Xing G (2022) Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv Mater 34(8):e2105635. https://doi.org/10.1002/adma.202105635

  37. Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI (2014) A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed 53(42):11232–11235. https://doi.org/10.1002/anie.201406466

    Article  CAS  Google Scholar 

  38. Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X, Tang S, Liu Y, Zhao J, Huang J (2018) Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J Phys Chem Lett 9(3):654–658. https://doi.org/10.1021/acs.jpclett.7b02679

    Article  CAS  Google Scholar 

  39. Zheng L, Shen L, Zhu T, Zhang D, Zheng J, Gong X (2022) Stable and efficient perovskite solar cells by discrete two-dimensional perovskites capped on the three-dimensional perovskites bilayer thin film. Nano Energy 96. https://doi.org/10.1016/j.nanoen.2022.107126

  40. Zhang X, Zhou W, Chen X, Chen Y, Li X, Wang M, Zhou Y, Yan H, Zheng Z, Zhang Y (2022) Dual optimization of bulk and surface via guanidine halide for efficient and stable 2D/3D hybrid perovskite solar cells. Adv Energy Mater. https://doi.org/10.1002/aenm.202201105

    Article  Google Scholar 

  41. Sidhik S, Wang Y, De Siena M, Asadpour R, Torma AJ, Terlier T, Ho K, Li W, Puthirath AB, Shuai X, Agrawal A, Traore B, Jones M, Giridharagopal R, Ajayan PM, Strzalka J, Ginger DS, Katan C, Alam MA, Even J, Kanatzidis MG, Mohite AD (2022) Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377(6613):1425–1430. https://doi.org/10.1126/science.abq7652

    Article  CAS  Google Scholar 

  42. Mahmud MA, Duong T, Peng J, Wu Y, Shen H, Walter D, Nguyen HT, Mozaffari N, Tabi GD, Catchpole KR, Weber KJ, White TP (2021) Origin of efficiency and stability enhancement in high‐performing mixed dimensional 2D‐3D perovskite solar cells: a review. Adv Funct Mater 32(3). https://doi.org/10.1002/adfm.202009164

  43. Krishna A, Gottis S, Nazeeruddin MK, Sauvage F (2019) Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv Funct Mater 29(8). https://doi.org/10.1002/adfm.201806482

  44. He T, Jiang Y, Xing X, Yuan M (2020) Structured perovskite light absorbers for efficient and stable photovoltaics. Adv Mater 32(26):e1903937. https://doi.org/10.1002/adma.201903937

  45. Kim E-B, Akhtar MS, Shin H-S, Ameen S, Nazeeruddin MK (2021) A review on two-dimensional (2D) and 2D–3D multidimensional perovskite solar cells: perovskites structures, stability, and photovoltaic performances. J Photochem Photobiol C: Photochem Rev 48. https://doi.org/10.1016/j.jphotochemrev.2021.100405

  46. Ge S, Shi Y, Xia C, Huang Z, Manzo M, Cai L, Ma H, Zhang S, Jiang J, Sonne C, Lam SS (2021) Progress in pyrolysis conversion of waste into value-added liquid pyro-oil, with focus on heating source and machine learning analysis. Energy Convers Manag 245. https://doi.org/10.1016/j.enconman.2021.114638

  47. Sun Y, Zhang L, Wang N, Zhang S, Cao Y, Miao Y, Xu M, Zhang H, Li H, Yi C, Wang J, Huang W (2018) The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. npj Flex Electron 2(1). https://doi.org/10.1038/s41528-018-0026-0

  48. Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend RH, Wang J, Huang W (2018) Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat Commun 9(1):608. https://doi.org/10.1038/s41467-018-03049-7

  49. Saparov B, Mitzi DB (2016) Organic-inorganic perovskites: structural versatility for functional materials design. Chem Rev 116(7):4558–4596. https://doi.org/10.1021/acs.chemrev.5b00715

    Article  CAS  Google Scholar 

  50. Wen X, Jia B (2022) New insight into carrier transport in 2D layered perovskites. Chem 8(4):904–906. https://doi.org/10.1016/j.chempr.2022.03.014

    Article  CAS  Google Scholar 

  51. Sirbu D, Balogun FH, Milot RL, Docampo P (2021) Layered perovskites in solar cells: structure, optoelectronic properties, and device design. Adv Energy Mater 11(24). https://doi.org/10.1002/aenm.202003877

  52. Wang H, Zhang X, Ma Y, Wang M, Wang J (2022) A universal approach for potassium‐passivated 2D perovskites. Solar RRL 6(6). https://doi.org/10.1002/solr.202101019

  53. Jiang T, Min H, Zou R, Wang M, Wen K, Lai J, Xu L, Wang Y, Xu W, Wang C, Wei K, Medhekar NV, Peng Q, Chang J, Huang W, Wang J (2022) Molecularly controlled quantum well width distribution and optoelectronic properties in quasi-2D perovskite light-emitting diodes. J Phys Chem Lett 13(18):4098–4103. https://doi.org/10.1021/acs.jpclett.2c00360

    Article  CAS  Google Scholar 

  54. Zhang Y, Li F, Jiang K-J, Huang J-H, Wang H, Fan H, Wang P, Liu C-M, Zhang L-P, Song Y (2018) From 2D to 3D: a facile and effective procedure for fabrication of planar CH3NH3PbI3perovskite solar cells. J Mater Chem A 6(37):17867–17873. https://doi.org/10.1039/c8ta07048b

    Article  CAS  Google Scholar 

  55. Mahmud MA, Duong T, Yin Y, Pham HT, Walter D, Peng J, Wu Y, Li L, Shen H, Wu N, Mozaffari N, Andersson G, Catchpole KR, Weber KJ, White TP (2019) Double‐sided surface passivation of 3D perovskite film for high‐efficiency mixed‐dimensional perovskite solar cells. Adv Funct Mater 30(7). https://doi.org/10.1002/adfm.201907962

  56. Liu C, Fang Z, Sun J, Lou Q, Ge J, Chen X, Zhou E, Shang M-H, Yang W, Ge Z (2020) Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials. ACS Energy Lett 5(11):3617–3627. https://doi.org/10.1021/acsenergylett.0c01784

    Article  CAS  Google Scholar 

  57. Niu T, Lu J, Jia X, Xu Z, Tang MC, Barrit D, Yuan N, Ding J, Zhang X, Fan Y, Luo T, Zhang Y, Smilgies DM, Liu Z, Amassian A, Jin S, Zhao K, Liu S (2019) Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells. Nano Lett 19(10):7181–7190. https://doi.org/10.1021/acs.nanolett.9b02781

    Article  CAS  Google Scholar 

  58. Yang F, Zhang P, Kamarudin MA, Kapil G, Ma T, Hayase S (2018) Addition effect of pyrene ammonium iodide to methylammonium lead halide perovskite‐2D/3D heterostructured perovskite with enhanced stability. Adv Funct Mater 28(46). https://doi.org/10.1002/adfm.201804856

  59. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, Shi SQ, Nie X, Qiu Y, Li D, Wu Q, Tsang DCW, Peng W, Sonne C (2020) Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater Interfaces 12(27):30824–30832. https://doi.org/10.1021/acsami.0c07448

    Article  CAS  Google Scholar 

  60. Zhan Y, Yang F, Chen W, Chen H, Shen Y, Li Y, Li Y (2021) Elastic lattice and excess charge carrier manipulation in 1D-3D perovskite solar cells for exceptionally long-term operational stability. Adv Mater 33(48):e2105170. https://doi.org/10.1002/adma.202105170

  61. Yang W, Zhan Y, Yang F, Li Y (2021) Hot-casting and anti-solvent free fabrication of efficient and stable two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Appl Mater Interfaces 13(51):61039–61046. https://doi.org/10.1021/acsami.1c17169

    Article  CAS  Google Scholar 

  62. Zhou T, Lai H, Liu T, Lu D, Wan X, Zhang X, Liu Y, Chen Y (2019) Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv Mater 31(32):e1901242. https://doi.org/10.1002/adma.201901242

  63. Tang J, Tian W, Zhao C, Sun Q, Zhang C, Cheng H, Shi Y, Jin S (2022) Imaging the moisture-induced degradation process of 2D organolead halide perovskites. ACS Omega 7(12):10365–10371. https://doi.org/10.1021/acsomega.1c06989

    Article  CAS  Google Scholar 

  64. Liang C, Gu H, Xia Y, Wang Z, Liu X, Xia J, Zuo S, Hu Y, Gao X, Hui W, Chao L, Niu T, Fang M, Lu H, Dong H, Yu H, Chen S, Ran X, Song L, Li B, Zhang J, Peng Y, Shao G, Wang J, Chen Y, Xing G, Huang W (2021) Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy 6(1):38–45. https://doi.org/10.1038/s41560-020-00721-5

    Article  CAS  Google Scholar 

  65. Mao L, Kennard RM, Traore B, Ke W, Katan C, Even J, Chabinyc ML, Stoumpos CC, Kanatzidis MG (2019) Seven-layered 2D hybrid lead iodide perovskites. Chem 5(10):2593–2604. https://doi.org/10.1016/j.chempr.2019.07.024

    Article  CAS  Google Scholar 

  66. Kepenekian M, Traore B, Blancon JC, Pedesseau L, Tsai H, Nie W, Stoumpos CC, Kanatzidis MG, Even J, Mohite AD, Tretiak S, Katan C (2018) Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett 18(9):5603–5609. https://doi.org/10.1021/acs.nanolett.8b02078

    Article  CAS  Google Scholar 

  67. Yu S, Meng J, Pan Q, Zhao Q, Pullerits T, Yang Y, Zheng K, Liang Z (2022) Imidazole additives in 2D halide perovskites: impacts of –CN versus –CH3 substituents reveal the mediation of crystal growth by phase buffering. Energy Environ Sci 15(8):3321–3330. https://doi.org/10.1039/d2ee00571a

    Article  CAS  Google Scholar 

  68. Dyksik M, Duim H, Maude DK, Baranowski M, Loi MA, Plochocka P (2021) Brightening of dark excitons in 2D perovskites. Sci Adv 7(46):eabk0904. https://doi.org/10.1126/sciadv.abk0904

    Article  CAS  Google Scholar 

  69. Xu Y, Wang M, Lei Y, Ci Z, Jin Z (2020) Crystallization kinetics in 2D perovskite solar cells. Adv Energy Mater 10(43). https://doi.org/10.1002/aenm.202002558

  70. Ramakrishnan S, Li H, Xu Y, Shin D, Dursun I, Cotlet M, Zhang Y, Yu Q (2022) Ruddlesden–Popper perovskites with narrow phase distribution for air‐stable solar cells. Solar RRL 6(9). https://doi.org/10.1002/solr.202200490

  71. Caiazzo A, Janssen RAJ (2022) High efficiency quasi-2D Ruddlesden-Popper perovskite solar cells. Adv Energy Mater. https://doi.org/10.1002/aenm.202202830

    Article  Google Scholar 

  72. Li X, Hoffman JM, Kanatzidis MG (2021) The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem Rev 121(4):2230–2291. https://doi.org/10.1021/acs.chemrev.0c01006

    Article  CAS  Google Scholar 

  73. Zheng Y, Chen S-C, Ma Y, Zheng Q (2022) Furfurylammonium as a spacer for efficient 2D Ruddlesden–Popper perovskite solar cells. Solar RRL 6(8). https://doi.org/10.1002/solr.202200221

  74. Wang YR, Senocrate A, Mladenović M, Dučinskas A, Kim GY, Rothlisberger U, Milić JV, Moia D, Grätzel M, Maier J (2022) Photo de‐mixing in Dion‐Jacobson 2D mixed halide perovskites. Adv Energy Mater 12(26). https://doi.org/10.1002/aenm.202200768

  75. Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski MR, Stoumpos CC, Kanatzidis MG (2018) Hybrid Dion-Jacobson 2D lead iodide perovskites. J Am Chem Soc 140(10):3775–3783. https://doi.org/10.1021/jacs.8b00542

    Article  CAS  Google Scholar 

  76. Zeng Z, Chen X, Yue Y, Li S, Chai N, Mai B, Meng J, Cheng Y-B, Wang X (2022) Photo‐induced degradation of 2D Dion−Jacobson perovskites under continuous light illumination. Solar RRL. https://doi.org/10.1002/solr.202200359

  77. Xu Z, Lu D, Dong X, Chen M, Fu Q, Liu Y (2021) Highly efficient and stable Dion-Jacobson perovskite solar cells enabled by extended pi-conjugation of organic spacer. Adv Mater 33(51):e2105083. https://doi.org/10.1002/adma.202105083

  78. Fu H (2021) Dion-Jacobson halide perovskites for photovoltaic and photodetection applications. J Mater Chem C 9(20):6378–6394. https://doi.org/10.1039/d1tc01061a

    Article  CAS  Google Scholar 

  79. Ke W, Mao L, Stoumpos CC, Hoffman J, Spanopoulos I, Mohite AD, Kanatzidis MG (2019) Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv Energy Mater 9(10). https://doi.org/10.1002/aenm.201803384

  80. Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X, Li C (2019) Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3(3):794–806. https://doi.org/10.1016/j.joule.2018.11.026

    Article  CAS  Google Scholar 

  81. Huang P, Kazim S, Wang M, Ahmad S (2019) Toward phase stability: dion-Jacobson layered perovskite for solar cells. ACS Energy Lett 4(12):2960–2974. https://doi.org/10.1021/acsenergylett.9b02063

    Article  CAS  Google Scholar 

  82. Zhang F, Lu H, Tong J, Berry JJ, Beard MC, Zhu K (2020) Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ Sci 13(4):1154–1186. https://doi.org/10.1039/c9ee03757h

    Article  CAS  Google Scholar 

  83. Mao L, Stoumpos CC, Kanatzidis MG (2019) Two-dimensional hybrid halide perovskites: principles and promises. J Am Chem Soc 141(3):1171–1190. https://doi.org/10.1021/jacs.8b10851

    Article  CAS  Google Scholar 

  84. Ma C, Shen D, Ng TW, Lo MF, Lee CS (2018) 2D perovskites with short interlayer distance for high-performance solar cell application. Adv Mater 30(22):e1800710. https://doi.org/10.1002/adma.201800710

  85. Cohen BE, Li Y, Meng Q, Etgar L (2019) Dion-Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett 19(4):2588–2597. https://doi.org/10.1021/acs.nanolett.9b00387

    Article  CAS  Google Scholar 

  86. Lin Y-H, Sakai N, Da P, Wu J, Sansom HC, Ramadan AJ, Mahesh S, Liu J, Oliver RDJ, Lim J, Aspitarte L, Sharma K, Madhu PK, Morales-Vilches AB, Nayak PK, Bai S, Gao F, Grovenor CRM, Johnston MB, Labram JG, Durrant JR, Ball JM, Wenger B, Stannowski B, Snaith HJ (2020) A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369(6499):96–102. https://doi.org/10.1126/science.aba1628

    Article  CAS  Google Scholar 

  87. Li G, Song J, Wu J, Song Z, Wang X, Sun W, Fan L, Lin J, Huang M, Lan Z, Gao P (2021) Efficient and stable 2D@3D/2D perovskite solar cells based on dual optimization of grain boundary and interface. ACS Energy Lett 6(10):3614–3623. https://doi.org/10.1021/acsenergylett.1c01649

    Article  CAS  Google Scholar 

  88. Lu D, Lv G, Xu Z, Dong Y, Ji X, Liu Y (2020) Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency. J Am Chem Soc 142(25):11114–11122. https://doi.org/10.1021/jacs.0c03363

    Article  CAS  Google Scholar 

  89. Shi R, Zhang Z, Fang W-H, Long R (2020) Charge localization control of electron–hole recombination in multilayer two-dimensional Dion-Jacobson hybrid perovskites. J Mater Chem A 8(18):9168–9176. https://doi.org/10.1039/d0ta01944e

    Article  CAS  Google Scholar 

  90. Mao L, Guo P, Kepenekian M, Spanopoulos I, He Y, Katan C, Even J, Schaller RD, Seshadri R, Stoumpos CC, Kanatzidis MG (2020) Organic cation alloying on intralayer a and interlayer A’ sites in 2D hybrid Dion-Jacobson lead bromide perovskites (A’)(A)Pb2Br7. J Am Chem Soc 142(18):8342–8351. https://doi.org/10.1021/jacs.0c01625

    Article  CAS  Google Scholar 

  91. Kong L, Liu G, Gong J, Mao L, Chen M, Hu Q, Lu X, Yang W, Kanatzidis MG, Mao HK (2020) Highly tunable properties in pressure-treated two-dimensional Dion-Jacobson perovskites. Proc Natl Acad Sci U S A 117(28):16121–16126. https://doi.org/10.1073/pnas.2003561117

    Article  CAS  Google Scholar 

  92. Wang H, Chan CCS, Chu M, Xie J, Zhao S, Guo X, Miao Q, Wong KS, Yan K, Xu J (2020) Interlayer cross‐linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling. Solar RRL 4(4). https://doi.org/10.1002/solr.201900578

  93. Ahmad S, Lu R, Liu Y, Liu X, Yang Q, Guo X, Li C (2022) Cesium-doped Dion-Jacobson 2D perovskites for highly stable photovoltaics with an 18.3% efficiency. Nano Energy 103. https://doi.org/10.1016/j.nanoen.2022.107822

  94. Zhang X, Yang T, Ren X, Zhang L, Zhao K, Liu S (2021) Film formation control for high performance Dion–Jacobson 2D perovskite solar cells. Adv Energy Mater 11(19). https://doi.org/10.1002/aenm.202002733

  95. Guo W, Yang Z, Dang J, Wang M (2021) Progress and perspective in Dion-Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy 86. https://doi.org/10.1016/j.nanoen.2021.106129

  96. Park IH, Zhang Q, Kwon KC, Zhu Z, Yu W, Leng K, Giovanni D, Choi HS, Abdelwahab I, Xu QH, Sum TC, Loh KP (2019) Ferroelectricity and Rashba effect in a two-dimensional dion-jacobson hybrid organic-inorganic perovskite. J Am Chem Soc 141(40):15972–15976. https://doi.org/10.1021/jacs.9b07776

    Article  CAS  Google Scholar 

  97. Zhu T, Wu H, Ji C, Zhang X, Peng Y, Yao Y, Ye H, Weng W, Lin W, Luo J (2022) Polar photovoltaic effect in chiral alternating cations intercalation‐type perovskites driving self‐powered ultraviolet circularly polarized light detection. Adv Optical Mater 10(15). https://doi.org/10.1002/adom.202200146

  98. Li P, Liang C, Liu X L, Li F, Zhang Y, Liu X T, Gu H, Hu X, Xing G, Tao X, Song Y (2019) Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv Mater 31(35):e1901966. https://doi.org/10.1002/adma.201901966

  99. Zhao Y, Zhu K (2016) Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45(3):655–689. https://doi.org/10.1039/c4cs00458b

    Article  CAS  Google Scholar 

  100. Nazir G, Lee SY, Lee JH, Rehman A, Lee JK, Seok SI, Park SJ (2022) Stabilization of perovskite solar cells: recent developments and future perspectives. Adv Mater e2204380. https://doi.org/10.1002/adma.202204380

  101. Li W, Wang Z, Deschler F, Gao S, Friend RH, Cheetham AK (2017) Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Rev Mater 2(3):16099. https://doi.org/10.1038/natrevmats.2016.99

  102. Fu Y (2022) Stabilization of metastable halide perovskite lattices in the 2D limit. Adv Mater 34(9):e2108556. https://doi.org/10.1002/adma.202108556

  103. Correa-Baena J-P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A (2017) Promises and challenges of perovskite solar cells. Science 358(6364):739–744. https://doi.org/10.1126/science.aam6323

    Article  CAS  Google Scholar 

  104. Ptak M, Maczka M, Gagor A, Sieradzki A, Stroppa A, Di Sante D, Perez-Mato JM, Macalik L (2016) Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate. Dalton Trans 45(6):2574–2583. https://doi.org/10.1039/c5dt04536c

  105. Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14(5):2584–2590. https://doi.org/10.1021/nl500390f

    Article  CAS  Google Scholar 

  106. Liu H, Lu Z, Zhang W, Wang J, Lu Z, Dai Q, Qi X, Shi Y, Hua Y, Chen R, Shi T, Xia H, Wang HL (2022) Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv Sci (Weinh) e2203640. https://doi.org/10.1002/advs.202203640

  107. Tian C, Zhao Y, Han X, Li B, Rui Y, Xiong H, Qiu Y, An W, Li K, Hou C, Li Y, Wang H, Zhang Q (2023) All-in-one additive enables defect passivated, crystallization modulated and moisture resisted perovskite films toward efficient solar cells. Chem Eng J 452. https://doi.org/10.1016/j.cej.2022.139345

  108. Grancini G, Nazeeruddin MK (2018) Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Rev Mater 4(1):4–22. https://doi.org/10.1038/s41578-018-0065-0

    Article  CAS  Google Scholar 

  109. Zhao X, Liu T, Loo YL (2022) Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv Mater 34(3):e2105849. https://doi.org/10.1002/adma.202105849

  110. Kim B, Seok SI (2020) Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy Environ Sci 13(3):805–820. https://doi.org/10.1039/c9ee03473k

    Article  CAS  Google Scholar 

  111. Kore BP, Gardner JM (2020) Water-resistant 2D lead(ii) iodide perovskites: correlation between optical properties and phase transitions. Mater Adv 1(7):2395–2400. https://doi.org/10.1039/d0ma00577k

    Article  CAS  Google Scholar 

  112. Kore BP, Zhang W, Hoogendoorn BW, Safdari M, Gardner JM (2021) Moisture tolerant solar cells by encapsulating 3D perovskite with long-chain alkylammonium cation-based 2D perovskite. Commun Mater 2(1). https://doi.org/10.1038/s43246-021-00200-8

  113. Li G, Song J, Wu J, Xu Y, Deng C, Song Z, Wang X, Du Y, Chen Q, Li R, Sun W, Lan Z (2022) Surface defect passivation by 1,8-naphthyridine for efficient and stable formamidinium-based 2D/3D perovskite solar cells. Chem Eng J 449. https://doi.org/10.1016/j.cej.2022.137806

  114. Yu Y, Liu R, Liu C, Shi XL, Yu H, Chen ZG (2022) Synergetic regulation of oriented crystallization and interfacial passivation enables 19.1% efficient wide‐bandgap perovskite solar cells. Adv Energy Mater. https://doi.org/10.1002/aenm.202201509

  115. Liu T, Guo J, Lu D, Xu Z, Fu Q, Zheng N, Xie Z, Wan X, Zhang X, Liu Y, Chen Y (2021) Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells. ACS Nano 15(4):7811–7820. https://doi.org/10.1021/acsnano.1c02191

  116. Uzurano G, Kuwahara N, Saito T, Fujii A, Ozaki M (2022) Orientation control of 2D perovskite in 2D/3D heterostructure by templated growth on 3D perovskite. ACS Mater Lett 4(2):378–384. https://doi.org/10.1021/acsmaterialslett.1c00709

    Article  CAS  Google Scholar 

  117. Xiong M, Zou W, Fan K, Qin C, Li S, Fei L, Jiang J, Huang H, Shen L, Gao F, Jen AKY, Yao K (2022) Tailoring phase purity in the 2D/3D perovskite heterostructures using lattice mismatch. ACS Energy Lett 7(1):550–559. https://doi.org/10.1021/acsenergylett.1c02580

    Article  CAS  Google Scholar 

  118. Jeong S, Seo S, Yang H, Park H, Shin S, Ahn H, Lee D, Park JH, Park NG, Shin H (2021) Cyclohexylammonium‐Based 2D/3D Perovskite heterojunction with funnel‐like energy band alignment for efficient solar cells (23.91%). Adv Energy Mater 11(42). https://doi.org/10.1002/aenm.202102236

  119. Zhang Y, Chen J, Lian X, Yang W, Li J, Tian S, Wu G, Chen H (2019) Highly efficient and thermal stable guanidinium-based two-dimensional perovskite solar cells via partial substitution with hydrophobic ammonium. Sci China Chem 62(7):859–865. https://doi.org/10.1007/s11426-018-9435-6

    Article  CAS  Google Scholar 

  120. Ali N, Rauf S, Kong W, Ali S, Wang X, Khesro A, Yang CP, Zhu B, Wu H (2019) An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites. Renew Sustain Energy Rev 109:160–186. https://doi.org/10.1016/j.rser.2019.04.022

    Article  Google Scholar 

  121. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J (2019) Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749):511–515. https://doi.org/10.1038/s41586-019-1036-3

    Article  CAS  Google Scholar 

  122. He Q, Worku M, Xu L, Zhou C, Lin H, Robb AJ, Hanson K, Xin Y, Ma B (2020) Facile formation of 2D–3D heterojunctions on perovskite thin film surfaces for efficient solar cells. ACS Appl Mater Interfaces 12(1):1159–1168. https://doi.org/10.1021/acsami.9b17851

    Article  CAS  Google Scholar 

  123. Quintero-Bermudez R, Gold-Parker A, Proppe AH, Munir R, Yang Z, Kelley SO, Amassian A, Toney MF, Sargent EH (2018) Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat Mater 17(10):900–907. https://doi.org/10.1038/s41563-018-0154-x

    Article  CAS  Google Scholar 

  124. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J (2019) Surface passivation of perovskite film for efficient solar cells. Nature Photonics 13(7):460–466. https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  125. Yoo JJ, Wieghold S, Sponseller MC, Chua MR, Bertram SN, Hartono NTP, Tresback JS, Hansen EC, Correa-Baena J-P, Bulović V, Buonassisi T, Shin SS, Bawendi MG (2019) An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ Sci 12(7):2192–2199. https://doi.org/10.1039/c9ee00751b

    Article  CAS  Google Scholar 

  126. Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG (2016) High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616):312–316. https://doi.org/10.1038/nature18306

    Article  CAS  Google Scholar 

  127. Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin MK (2017) One-year stable perovskite solar cells by 2D/3D interface engineering. Nat Commun 8:15684. https://doi.org/10.1038/ncomms15684

  128. Yao Q, Xue Q, Li Z, Zhang K, Zhang T, Li N, Yang S, Brabec C J, Yip HL, Cao Y (2020) Graded 2D/3D Perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells. Adv Mater 32(26):e2000571. https://doi.org/10.1002/adma.202000571

  129. Li MH, Yeh HH, Chiang YH, Jeng US, Su CJ, Shiu HW, Hsu YJ, Kosugi N, Ohigashi T, Chen YA, Shen PS, Chen P, Guo TF (2018) Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv Mater 30(30):e1801401. https://doi.org/10.1002/adma.201801401

  130. He X, Wang M, Cao F, Tian W, Li L (2022) Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells. J Mater Sci Technol 124:243–251. https://doi.org/10.1016/j.jmst.2022.01.031

    Article  Google Scholar 

  131. Fan W, Shen Y, Deng K, Chen Q, Bai Y (2021) A tailored spacer molecule in 2D/3D heterojunction for ultralow-voltage-loss and stable perovskite solar cells. J Mater Chem A 9(47):26829–26838. https://doi.org/10.1039/d1ta08984f

    Article  CAS  Google Scholar 

  132. Jang Y-W, Lee S, Yeom KM, Jeong K, Choi K, Choi M, Noh JH (2021) Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nature Energy 6(1):63–71. https://doi.org/10.1038/s41560-020-00749-7

    Article  CAS  Google Scholar 

  133. Chen C, Liang J, Zhang J, Liu X, Yin X, Cui H, Wang H, Wang C, Li Z, Gong J, Lin Q, Ke W, Tao C, Da B, Ding Z, Xiao X, Fang G (2021) Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90. https://doi.org/10.1016/j.nanoen.2021.106608

  134. Beal RE, Hagström NZ, Barrier J, Gold-Parker A, Prasanna R, Bush KA, Passarello D, Schelhas LT, Brüning K, Tassone CJ, Steinrück H-G, McGehee MD, Toney MF, Nogueira AF (2020) Structural origins of light-induced phase segregation in organic-inorganic halide perovskite photovoltaic materials. Matter 2(1):207–219. https://doi.org/10.1016/j.matt.2019.11.001

    Article  Google Scholar 

  135. Chen B, Rudd PN, Yang S, Yuan Y, Huang J (2019) Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev 48(14):3842–3867. https://doi.org/10.1039/C8CS00853A

    Article  CAS  Google Scholar 

  136. Liu B, Hu J, He D, Bai L, Zhou Q, Wang W, Xu C, Song Q, Lee D, Zhao P, Hao F, Niu X, Zang Z, Chen J (2022) Simultaneous passivation of bulk and interface defects with gradient 2D/3D heterojunction engineering for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces 14(18):21079–21088. https://doi.org/10.1021/acsami.2c04374

    Article  CAS  Google Scholar 

  137. He M, Liang J, Zhang Z, Qiu Y, Deng Z, Xu H, Wang J, Yang Y, Chen Z, Chen C-C (2020) Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J Mater Chem A 8(48):25831–25841. https://doi.org/10.1039/d0ta09209f

  138. Kim H, Lee SU, Lee DY, Paik MJ, Na H, Lee J, Seok S I (2019) Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv Energy Mater 9(47). https://doi.org/10.1002/aenm.201902740

  139. Chen P, Bai Y, Wang S, Lyu M, Yun J H, Wang L (2018) In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv Funct Mater 28(17). https://doi.org/10.1002/adfm.201706923

  140. Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J (2021) Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373(6557):902–907. https://doi.org/10.1126/science.abi6323

    Article  CAS  Google Scholar 

  141. Chen B, Chen H, Hou Y, Xu J, Teale S, Bertens K, Chen H, Proppe A, Zhou Q, Yu D, Xu K, Vafaie M, Liu Y, Dong Y, Jung EH, Zheng C, Zhu T, Ning Z, Sargent EH (2021) Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv Mater 33(41):e2103394. https://doi.org/10.1002/adma.202103394

  142. Xia J, Liang C, Mei S, Gu H, He B, Zhang Z, Liu T, Wang K, Wang S, Chen S, Cai Y, Xing G (2021) Deep surface passivation for efficient and hydrophobic perovskite solar cells. J Mater Chem A 9(5):2919–2927. https://doi.org/10.1039/d0ta10535j

    Article  CAS  Google Scholar 

  143. Malouangou MD, Yang Y, Zhang Y, Bai L, Matondo JT, Mbumba M, Akram MW, Guli M (2022) Facilitate hole transport with thin 2D perovskite capping layer to passivate interface defects of 3D perovskite solar cells using PEABr. Mater Res Bull 150. https://doi.org/10.1016/j.materresbull.2022.111793

  144. Yukta Parikh N, Chavan RD, Yadav P, Nazeeruddin MK, Satapathi S (2022) Highly efficient and stable 2D Dion Jacobson/3D perovskite heterojunction solar cells. ACS Appl Mater Interfaces 14(26):29744–29753. https://doi.org/10.1021/acsami.2c04455

    Article  CAS  Google Scholar 

  145. Zheng H, Dong X, Wu W, Liu G, Pan X (2022) Multifunctional heterocyclic-based spacer cation for efficient and stable 2D/3D perovskite solar cells. ACS Appl Mater Interfaces 14(7):9183–9191. https://doi.org/10.1021/acsami.1c23991

    Article  CAS  Google Scholar 

  146. Li Y, Zhang J, Xiang J, Hu H, Zhong H, Shi Y (2022) A novel 4,4′-bipiperidine-based organic salt for efficient and stable 2D–3D perovskite solar cells. ACS Appl Mater Interfaces 14(19):22324–22331. https://doi.org/10.1021/acsami.1c23115

    Article  CAS  Google Scholar 

  147. Xu J, Cui J, Yang S, Liu Z, Guo X, Che Y, Xu D, Zhao W, Yuan N, Ding J, Liu S (2022) Stable high-efficiency CsPbI2Br solar cells by designed passivation using multifunctional 2D perovskite. Adv Funct Mater. https://doi.org/10.1002/adfm.202202829

  148. Zhang X, Zhou W, Chen X, Chen Y, Li X, Wang M, Zhou Y, Yan H, Zheng Z, Zhang Y (2022) Dual optimization of bulk and surface via guanidine halide for efficient and stable 2D/3D hybrid perovskite solar cells. Adv Energy Mater 12(26). https://doi.org/10.1002/aenm.202201105

  149. Zhou T, Xu Z, Wang R, Dong X, Fu Q, Liu Y (2022) Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv Mater 34(17):e2200705. https://doi.org/10.1002/adma.202200705

  150. Azmi R, Ugur E, Seitkhan A, Aljamaan F, Subbiah AS, Liu J, Harrison GT, Nugraha MI, Eswaran MK, Babics M, Chen Y, Xu F, Allen TG, Rehman AU, Wang C-L, Anthopoulos TD, Schwingenschlögl U, De Bastiani M, Aydin E, De Wolf S (2022) Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376(6588):73–77. https://doi.org/10.1126/science.abm5784

    Article  CAS  Google Scholar 

  151. Jin M, Li H, Lou Q, Du Q, Huang Q, Shen Z, Li F, Chen C (2022) Toward high‐efficiency stable 2D/3D perovskite solar cells by incorporating multifunctional CNT:TiO2 additives into 3D perovskite layer. EcoMat 4(2). https://doi.org/10.1002/eom2.12166

  152. Deng C, Wu J, Du Y, Chen Q, Song Z, Li G, Wang X, Lin J, Sun W, Huang M, Huang Y, Gao P, Lan Z (2021) Surface reconstruction and in situ formation of 2D layer for efficient and stable 2D/3D perovskite solar cells. Small Methods 5(12):e2101000. https://doi.org/10.1002/smtd.202101000

  153. Ye X, Cai H, Sun Q, Xu T, Ni J, Li J, Zhang J (2022) Organic spacer engineering in 2D/3D hybrid perovskites for efficient and stable solar cells. New J Chem 46(6):2837–2845. https://doi.org/10.1039/d1nj05232b

    Article  CAS  Google Scholar 

  154. Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng XC, Huang J (2019) Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J Am Chem Soc 141(14):5781–5787. https://doi.org/10.1021/jacs.8b13091

    Article  CAS  Google Scholar 

  155. Lin CT, Lee J, Kim J, Macdonald TJ, Ngiam J, Xu B, Daboczi M, Xu W, Pont S, Park B, Kang H, Kim JS, Payne DJ, Lee K, Durrant JR, McLachlan MA (2019) Origin of open‐circuit voltage enhancements in planar perovskite solar cells induced by addition of bulky organic cations. Adv Funct Mater 30(7). https://doi.org/10.1002/adfm.201906763

  156. Zhou J, Li M, Wang S, Tan L, Liu Y, Jiang C, Zhao X, Ding L, Yi C (2022) 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy 95. https://doi.org/10.1016/j.nanoen.2022.107036

  157. Milot RL, Sutton RJ, Eperon GE, Haghighirad AA, Martinez Hardigree J, Miranda L, Snaith HJ, Johnston MB, Herz LM (2016) Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Lett 16(11):7001–7007. https://doi.org/10.1021/acs.nanolett.6b03114

    Article  CAS  Google Scholar 

  158. Stoumpos CC, Cao DH, Clark DJ, Young J, Rondinelli JM, Jang JI, Hupp JT, Kanatzidis MG (2016) Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater 28(8):2852–2867. https://doi.org/10.1021/acs.chemmater.6b00847

    Article  CAS  Google Scholar 

  159. Chen R, Shen L, Zheng L, Zhu T, Liu Y, Liu L, Zheng J, Gong X (2021) Two-/three-dimensional perovskite bilayer thin films post-treated with solvent vapor for high-performance perovskite photovoltaics. ACS Appl Mater Interfaces 13(41):49104–49113. https://doi.org/10.1021/acsami.1c15735

    Article  CAS  Google Scholar 

  160. Buizza LRV, Crothers TW, Wang Z, Patel JB, Milot RL, Snaith HJ, Johnston MB, Herz LM (2019) Charge‐carrier dynamics, mobilities, and diffusion lengths of 2D–3D hybrid butylammonium–cesium–formamidinium lead halide perovskites. Adv Funct Mater 29(35). https://doi.org/10.1002/adfm.201902656

  161. Liu Y, Akin S, Pan L, Uchida R, Arora N, Milić JV, Hinderhofer A, Schreiber F, Uhl AR, Zakeeruddin SM, Hagfeldt A, Dar MI, Grätzel M (2019) Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci Adv 5(6):eaaw2543. https://doi.org/10.1126/sciadv.aaw2543

    Article  CAS  Google Scholar 

  162. Li Y, Wu J, Zhang Y, Zhang L, Zhou X, Hu B, Jiang Z, Zeng J, Wang D, Liu Y, Chen S, Liu Z, Liu C, Wang X, Xu B (2022) Whether organic spacer cations induced 2D/3D or quasi-2D/3D mixed dimensional perovskites? Chem Eng J 450. https://doi.org/10.1016/j.cej.2022.137887

  163. Pareja-Rivera C, Morán-Muñoz JA, Gómora-Figueroa AP, Jancik V, Vargas B, Rodríguez-Hernández J, Solis-Ibarra D (2022) Optimizing broadband emission in 2d halide perovskites. Chem Mater. https://doi.org/10.1021/acs.chemmater.2c00937

    Article  Google Scholar 

  164. Chen H, Lin J, Kang J, Kong Q, Lu D, Kang J, Lai M, Quan LN, Lin Z, Jin J, Wang L-W, Toney MF, Yang P (2020) Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Sci Adv 6(4):eaay4045. https://doi.org/10.1126/sciadv.aay4045

    Article  CAS  Google Scholar 

  165. Jana MK, Song R, Xie Y, Zhao R, Sercel PC, Blum V, Mitzi DB (2021) Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat Commun 12(1):4982. https://doi.org/10.1038/s41467-021-25149-7

    Article  CAS  Google Scholar 

  166. Chen Z, Guo Y, Wertz E, Shi J (2019) Merits and challenges of Ruddlesden-Popper soft halide perovskites in electro-optics and optoelectronics. Adv Mater 31(1):e1803514. https://doi.org/10.1002/adma.201803514

    Article  CAS  Google Scholar 

  167. Dhanabalan B, Leng YC, Biffi G, Lin ML, Tan PH, Infante I, Manna L, Arciniegas MP, Krahne R (2020) Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 14(4):4689–4697. https://doi.org/10.1021/acsnano.0c00435

    Article  CAS  Google Scholar 

  168. Torma AJ, Li W, Zhang H, Tu Q, Klepov VV, Brennan MC, McCleese CL, Krzyaniak MD, Wasielewski MR, Katan C, Even J, Holt MV, Grusenmeyer TA, Jiang J, Pachter R, Kanatzidis MG, Blancon JC, Mohite AD (2021) Interstitial nature of Mn(2+) doping in 2D perovskites. ACS Nano 15(12):20550–20561. https://doi.org/10.1021/acsnano.1c09142

    Article  CAS  Google Scholar 

  169. Pham MT, Amerling E, Ngo TA, Luong HM, Hansen K, Pham HT, Vu TN, Tran H, Whittaker‐Brooks L, Nguyen TD (2021) Strong Rashba‐Dresselhaus effect in nonchiral 2D Ruddlesden‐Popper perovskites. Adv Opt Mater 10(1). https://doi.org/10.1002/adom.202101232

  170. Yan L, Jana MK, Sercel PC, Mitzi DB, You W (2021) Alkyl-aryl cation mixing in chiral 2D perovskites. J Am Chem Soc 143(43):18114–18120. https://doi.org/10.1021/jacs.1c06841

    Article  CAS  Google Scholar 

  171. Kim D, Dryzhakov B, Liu Y, Ovchinnikova OS, Hu B, Kalinin SV, Ahmadi M (2021) Ferroelectric and charge transport properties in strain-engineered two-dimensional lead iodide perovskites. Chem Mater 33(11):4077–4088. https://doi.org/10.1021/acs.chemmater.1c00679

    Article  CAS  Google Scholar 

  172. Kumar A, Solanki A, Manjappa M, Ramesh S, Srivastava YK, Agarwal P, Sum TC, Singh R (2020) Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci Adv 6(8):eaax8821. https://doi.org/10.1126/sciadv.aax8821

    Article  CAS  Google Scholar 

  173. Li N, Apergi S, Chan CCS, Jia Y, Xie F, Liang Q, Li G, Wong KS, Brocks G, Tao S, Zhao N (2022) Diammonium-mediated perovskite film formation for high-luminescence red perovskite light-emitting diodes. Adv Mater 34(30):e2202042. https://doi.org/10.1002/adma.202202042

    Article  CAS  Google Scholar 

  174. Tao W, Zhang Y, Zhu H (2022) Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications. Acc Chem Res 55(3):345–353. https://doi.org/10.1021/acs.accounts.1c00626

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the China Postdoctoral Science Foundation (2021M690907) and the Natural Science Foundation of Henan Province (No. 202300410073).

Author information

Authors and Affiliations

Authors

Contributions

Xiaohui Li: conceptualization, writing—original draft. Putao Zhang: conceptualization, project administration, writing—review and editing. Shengjun Li: conceptualization, writing—review and editing. Priyanka Wasnik: writing—original draft. Junna Ren: writing—original draft. Qinglong Jiang; writing—review and editing. Ben Bin Xu: writing—review and editing. Vignesh Murugadoss: conceptualization, writing—review and editing.

Corresponding authors

Correspondence to Putao Zhang, Shengjun Li or Vignesh Murugadoss.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, P., Li, S. et al. Mixed perovskites (2D/3D)-based solar cells: a review on crystallization and surface modification for enhanced efficiency and stability. Adv Compos Hybrid Mater 6, 111 (2023). https://doi.org/10.1007/s42114-023-00691-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00691-8

Keywords

Navigation