Skip to main content
Log in

Neuromorphic properties of flexible carbon nanotube/polydimethylsiloxane nanocomposites

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Neuromorphic materials are promising for fabricating artificial synapses for flexible electronics, but they are usually expensive and lack a good combination of electronic and mechanical properties. In this paper, low-cost flexible carbon nanotube/polydimethylsiloxane (CNT/PDMS) nanocomposites were prepared by solution processing. Their neuromorphic properties were studied as a function of PDMS macromolecular network structure. Specifically, the structural defects of the polymer network originating from intermolecular crosslinking reactions were tuned to tailor the electron transfer between carbon nanotubes, resulting in a recorded low switching power consumption (1.40 × 10–10 W) and a high working bending radius of curvature (5 mm) compared to other organic, flexible neuromorphic materials. As-fabricated CNT/PDMS composites demonstrate robust performance for 104 operating cycles under mechanical deformation. Emulation of synaptic functions was also presented, showing long-term potentiation (LTP) and long-term depression (LTD) characteristics. These results lay a foundation for networked polymer-based multifunctional nanocomposites for flexible neuromorphic electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Narayana KJ, Gupta Burela R (2018) A review of recent research on multifunctional composite materials and structures with their applications. Mater Today Proc 5:5580–5590. https://doi.org/10.1016/j.matpr.2017.12.149

    Article  Google Scholar 

  2. Ali A, Andriyana A (2020) Properties of multifunctional composite materials based on nanomaterials: a review. RSC Adv 10:16390–16403. https://doi.org/10.1039/C9RA10594H

    Article  CAS  Google Scholar 

  3. Sun F, Lu Q, Feng S, Zhang T (2021) Flexible artificial sensory systems based on neuromorphic devices. ACS Nano 15:3875–3899. https://doi.org/10.1021/acsnano.0c10049

    Article  CAS  Google Scholar 

  4. Lee S, Kim S, Yoo H (2021) Contribution of polymers to electronic memory devices and applications. Polymers (Basel). https://doi.org/10.3390/polym13213774

    Article  Google Scholar 

  5. Ghoneim MT, Hussain MM (2015) Review on physically flexible nonvolatile memory for internet of everything electronics. Electronics (Basel) 4:424–479. https://doi.org/10.3390/electronics4030424

    Article  CAS  Google Scholar 

  6. Wang T-Y, Meng J-L, Rao M-Y, He Z-Y, Chen L, Zhu H, Sun Q-Q, Ding S-J, Bao W-Z, Zhou P, Zhang DW (2020) Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett 20:4111–4120. https://doi.org/10.1021/acs.nanolett.9b05271

    Article  CAS  Google Scholar 

  7. Wang T-Y, Meng J-L, Li Q-X, Chen L, Zhu H, Sun Q-Q, Ding S-J, Zhang DW (2021) Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique. J Mater Sci Technol 60:21–26. https://doi.org/10.1016/j.jmst.2020.04.059

    Article  CAS  Google Scholar 

  8. Zhu Y, Liang J, Mathayan V, Nyberg T, Primetzhofer D, Shi X, Zhang Z (2022) High performance full-Inorganic flexible memristor with combined resistance-switching. ACS Appl Mater Interfaces 14:21173–21180. https://doi.org/10.1021/acsami.2c02264

    Article  CAS  Google Scholar 

  9. Zhang H, Liu R, Zhao H, Sun Z, Liu Z, He L, Li Y (2021) Research progress of biomimetic memristor flexible synapse. Coatings 12:21. https://doi.org/10.3390/coatings12010021

    Article  CAS  Google Scholar 

  10. Fu T, Liu X, Gao H, Ward JE, Liu X, Yin B, Wang Z, Zhuo Y, Walker DJF, Joshua Yang J, Chen J, Lovley DR, Yao J (2020) Bioinspired bio-voltage memristors. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-15759-y

    Article  CAS  Google Scholar 

  11. Kim M-K, Lee J-S (2018) Ultralow power consumption flexible biomemristors. ACS Appl Mater Interfaces 10:10280–10286. https://doi.org/10.1021/acsami.8b01781

    Article  CAS  Google Scholar 

  12. Ge J, Li D, Huang C, Zhao X, Qin J, Liu H, Ye W, Xu W, Liu Z, Pan S (2020) Memristive synapses with high reproducibility for flexible neuromorphic networks based on biological nanocomposites. Nanoscale 12:720–730. https://doi.org/10.1039/C9NR08001E

    Article  CAS  Google Scholar 

  13. Austin MJ, Rosales AM (2019) Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci 7:490–505. https://doi.org/10.1039/C8BM01215F

    Article  CAS  Google Scholar 

  14. Tan Y, Adhikari RY, Malvankar NS, Ward JE, Woodard TL, Nevin KP, Lovley DR (2017) Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. mBio 8. https://doi.org/10.1128/mBio.02203-16

  15. Liu X, Gao H, Ward JE, Liu X, Yin B, Fu T, Chen J, Lovley DR, Yao J (2020) Power generation from ambient humidity using protein nanowires. Nature 578:550–554. https://doi.org/10.1038/s41586-020-2010-9

    Article  CAS  Google Scholar 

  16. Kausar A (2020) Polydimethylsiloxane-based nanocomposite: present research scenario and emergent future trends. Polym-Plast Technol Mat 59:1148–1166. https://doi.org/10.1080/25740881.2020.1719149

    Article  CAS  Google Scholar 

  17. Wang F, Tay TE, Sun Y, Liang W, Yang B (2019) Low-voltage and -surface energy SWCNT/poly(dimethylsiloxane) (PDMS) nanocomposite film: surface wettability for passive anti-icing and surface-skin heating for active deicing. Compos Sci Technol 184:107872. https://doi.org/10.1016/j.compscitech.2019.107872

  18. Li Z, Nambiar S, Zheng W, Yeow JTW (2013) PDMS/single-walled carbon nanotube composite for proton radiation shielding in space applications. Mater Lett 108:79–83. https://doi.org/10.1016/j.matlet.2013.06.030

    Article  CAS  Google Scholar 

  19. Flory PJ (1979) Molecular theory of rubber elasticity Polymer (Guildf) 20:1317–1320. https://doi.org/10.1016/0032-3861(79)90268-4

    Article  CAS  Google Scholar 

  20. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity J Chem Phys 11:512–520. https://doi.org/10.1063/1.1723791

    Article  CAS  Google Scholar 

  21. Bae S, Galant O, Diesendruck CE, Silberstein MN (2018) The effect of intrachain cross-linking on the thermomechanical behavior of bulk polymers assembled solely from single chain polymer nanoparticles. Macromolecules 51:7160–7168. https://doi.org/10.1021/acs.macromol.8b01027

    Article  CAS  Google Scholar 

  22. Kim JG, Jeon J, Sivakumar R, Lee J, Kim YH, Cho M, Youk JH, Wie JJ (2021) Light-fueled climbing of monolithic torsional soft robots via molecular engineering. Adv Intell Syst 4(3):2100148. https://doi.org/10.1002/aisy.202100148

  23. Deng F, Zheng QS (2008) An analytical model of effective electrical conductivity of carbon nanotube composites. Appl Phys Lett. https://doi.org/10.1063/1.2857468

    Article  Google Scholar 

  24. Goswami S, Goswami S, Venkatesan T (2020) An organic approach to low energy memory and brain inspired electronics. Appl Phys Rev 7:21303. https://doi.org/10.1063/1.5124155

    Article  CAS  Google Scholar 

  25. Mutiso RM, Sherrott MC, Li J, Winey KI (2012) Simulations and generalized model of the effect of filler size dispersity on electrical percolation in rod networks. Phys Rev B Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.86.214306

    Article  Google Scholar 

  26. Zhang P, Ang YS, Garner AL, Valfells Á, Luginsland JW, Ang LK (2021) Space-charge limited current in nanodiodes: ballistic, collisional, and dynamical effects. J Appl Phys. https://doi.org/10.1063/5.0042355

    Article  Google Scholar 

  27. Parodi F (1989) Physics and chemistry of microwave processing. In: Allen G, Bevington JCBT-CPS and S (eds) Comprehensive polymer science and supplements. Elsevier, Amsterdam, pp 669–728

  28. Mark P, Helfrich W (1962) Space-charge-limited currents in organic crystals. J Appl Phys 33:205–215. https://doi.org/10.1063/1.1728487

    Article  CAS  Google Scholar 

  29. Wang T, Meng J, Chen L, Zhu H, Sun Q, Ding S, Bao W, Zhang DW (2021) Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3:212–221. https://doi.org/10.1002/inf2.12158

    Article  Google Scholar 

  30. Lee SH, Park HL, Kim MH, Kang S, Lee SD (2019) Interfacial triggering of conductive filament growth in organic flexible memristor for high reliability and uniformity. ACS Appl Mater Interfaces 11:30108–30115. https://doi.org/10.1021/acsami.9b10491

    Article  CAS  Google Scholar 

  31. Ji X, Song L, Zhong S, Jiang Y, Lim KG, Wang C, Zhao R (2018) Biodegradable and flexible resistive memory for transient electronics. J Phys Chem C 122:16909–16915. https://doi.org/10.1021/acs.jpcc.8b03075

    Article  CAS  Google Scholar 

  32. Xu J, Zhao X, Wang Z, Xu H, Hu J, Ma J, Liu Y (2019) Biodegradable natural pectin-based flexible multilevel resistive switching memory for transient electronics. Small 15:1803970. https://doi.org/10.1002/smll.201803970

    Article  CAS  Google Scholar 

  33. Lee S-H, Park H-L, Keum C-M, Lee I-H, Kim M-H, Lee S-D (2019) Organic flexible memristor with reduced operating voltage and high stability by interfacial control of conductive filament Growth. Phys Status Solidi – Rapid Res Lett 13:1900044. https://doi.org/10.1002/pssr.201900044

  34. Hosseini NR, Lee J-S (2015) Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv Funct Mater 25:5586–5592. https://doi.org/10.1002/adfm.201502592

    Article  CAS  Google Scholar 

  35. Choi MK, Kim WK, Sung S, Wu C, Kim HW, Kim TW (2018) Flexible memristive devices based on polyimide:mica nanosheet nanocomposites with an embedded PEDOT:PSS layer. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-30771-5

    Article  CAS  Google Scholar 

  36. Qian M, Pan Y, Liu F, Wang M, Shen H, He D, Wang B, Shi Y, Miao F, Wang X (2014) Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv Mater 26:3275–3281. https://doi.org/10.1002/adma.201306028

    Article  CAS  Google Scholar 

  37. Zhang C, Tai YT, Shang J, Liu G, Wang KL, Hsu C, Yi X, Yang X, Xue W, Tan H, Guo S, Pan L, Li RW (2016) Synaptic plasticity and learning behaviours in flexible artificial synapse based on polymer/viologen system. J Mater Chem C Mater 4:3217–3223. https://doi.org/10.1039/c6tc00496b

    Article  CAS  Google Scholar 

  38. Raeis-Hosseini N, Park Y, Lee JS (2018) Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv Funct Mater 28:1–9. https://doi.org/10.1002/adfm.201800553

    Article  CAS  Google Scholar 

  39. Wu C, Kim TW, Guo T, Li F, Lee DU, Yang JJ (2017) Mimicking classical conditioning based on a single flexible memristor. Adv Mater. https://doi.org/10.1002/adma.201602890

    Article  Google Scholar 

  40. Le VQ, Do TH, Retamal JRD, Shao PW, Lai YH, Wu WW, He JH, Chueh YL, Chu YH (2019) Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy 56:322–329. https://doi.org/10.1016/j.nanoen.2018.10.042

    Article  CAS  Google Scholar 

  41. Qian K, Tay RY, Lin MF, Chen J, Li H, Lin J, Wang J, Cai G, Nguyen VC, Teo EHT, Chen T, Lee PS (2017) Direct observation of indium conductive filaments in transparent, flexible, and transferable resistive switching memory. ACS Nano 11:1712–1718. https://doi.org/10.1021/acsnano.6b07577

    Article  CAS  Google Scholar 

  42. Yeom SW, You B, Cho K, Jung HY, Park J, Shin C, Ju BK, Kim JW (2017) Silver nanowire/colorless-polyimide composite electrode: application in flexible and transparent resistive switching memory. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-03746-1

    Article  CAS  Google Scholar 

  43. Kim M, Choi KC (2017) Transparent and flexible resistive random access memory based on Al2O3 film with multilayer electrodes. IEEE Trans Electron Devices 64:3508–3510. https://doi.org/10.1109/TED.2017.2716831

    Article  CAS  Google Scholar 

  44. Won Seo J, Park JW, Lim KS, Kang SJ, Hong YH, Yang JH, Fang L, Sung GY, Kim HK (2009) Transparent flexible resistive random access memory fabricated at room temperature. Appl Phys Lett 95:1–4. https://doi.org/10.1063/1.3242381

    Article  CAS  Google Scholar 

  45. Kim S, Son JH, Lee SH, You BK, Il PK, Lee HK, Byun M, Lee KJ (2014) Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. Adv Mater 26:7480–7487. https://doi.org/10.1002/adma.201402472

    Article  CAS  Google Scholar 

  46. Liu Y, Wu L, Liu Q, Liu L, Ke S, Peng Z, Shi T, Yuan X, Huang H, Li J, Ye C, Chu PK, Wang J, Yu XF (2021) Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors. Adv Funct Mater 2110900:1–8. https://doi.org/10.1002/adfm.202110900

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciate the funding support from the National Science Foundation and Texas A&M President’s Excellent Fund.

Author information

Authors and Affiliations

Authors

Contributions

S.W. conceived the research. S. W., R. L., and J. K. designed the experiments. R. L., J. K., P. D., A. H., W.L., and J. M. prepared samples and measured the properties. R. L., J. K., J. Q., C. M., M. Z., and S. W. analyzed the data and wrote the manuscript with comments and inputs from all authors.

Corresponding author

Correspondence to Shiren Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Kim, J.G., Dhakal, P. et al. Neuromorphic properties of flexible carbon nanotube/polydimethylsiloxane nanocomposites. Adv Compos Hybrid Mater 6, 14 (2023). https://doi.org/10.1007/s42114-022-00599-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00599-9

Keywords

Navigation