Skip to main content

Synthesis of CsPbBr3/CsPb2Br5@silica yolk-shell composite microspheres: precisely controllable structure and improved catalytic activity for dye degradation

Abstract

Heterogeneous metal halide perovskites (MHPs) are of great interest in photovoltaic and photocatalytic applications because of their high photon-to-electron conversion efficiency. However, the improvement in the stability of heterogeneous MHP is still a great challenge and has rarely been reported for polar solvent–based photocatalytic applications. Herein, we report a precisely controllable synthesis of CsPbBr3/CsPb2Br5 heterogeneous crystals into mesoporous hollow SiO2 spheres to form the CsPbBr3/CsPb2Br5@SiO2 yolk-shell microspheres. The composition modulation by simply adjusting the ratio of Cs+ and Pb2+ could result in the perovskite structure evolution from CsPbBr3 to CsPbBr3/CsPb2Br5 and CsPb2Br5. The prepared CsPbBr3/CsPb2Br5@SiO2 were dispersed in the aqueous rhodamine B solutions and exhibited higher photocatalytic activities than the commercial TiO2 (P25). The improvement in the photocatalytic efficiency is mainly caused by the formation of heterogeneous CsPbBr3/CsPb2Br5 to boost the spatial charge separation efficiency.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ye T, Pan L, Yang Y, Liang Q, Lu Y, Sui M, Golberg D, Wang X (2020) Synthesis of highly-oriented black CsPbI3 microstructures for high-performance solar cells. Chem Mater 32:3235–3244

    CAS  Article  Google Scholar 

  2. Zhang T, Dar MI, Li G, Xu F, Guo N, Grätzel M, Zhao Y (2017) Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci Adv 3:e1700841

    Article  CAS  Google Scholar 

  3. Zhong Q, Cao M, Xu Y, Li P, Zhang Y, Hu H, Yang D, Xu Y, Wang L, Li Y, Zhang X, Zhang Q (2019) L-type ligand-assisted acid-free synthesis of CsPbBr 3 nanocrystals with near-unity photoluminescence quantum yield and high stability. Nano Lett 19:4151–4157

    CAS  Article  Google Scholar 

  4. Chen C, Hu J, Xu Z, Wang Z, Wang Y, Zeng L, Liu X, Li Y, Mai Y, Guo F (2021) Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices. Adv Compos Hybrid Mater 4:1261–1269

    CAS  Article  Google Scholar 

  5. Wang W, Li J, Ni P, Liu B, Chen Q, Lu Y, Wu H, Cao B, Liu Z (2019) Improved synthesis of perovskite CsPbX3@SiO2 (X = Cl, Br, and I) quantum dots with enhanced stability and excellent optical properties. ES Mater Manuf 4:66–73

    Google Scholar 

  6. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696

    CAS  Article  Google Scholar 

  7. Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt GJ, Azimi H, Brabec CJ, Stangl J, Kovalenko MV, Heiss W (2015) Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics 9:444–449

    CAS  Article  Google Scholar 

  8. Liu M, Ma L, Xie K, Zeng P, Wei S, Zhang F, Li C, Wang F (2022) Efficiently improved photoluminescence in cesium lead halide perovskite nanocrystals by using bis (trifluoromethane) sulfonimide. J Phys Chem Lett 13:1519–1525

    CAS  Article  Google Scholar 

  9. Huang H, Pradhan B, Hofkens J, Roeffaers MBJ, Steele JA (2020) Solar-driven metal halide perovskite photocatalysis: design, stability, and performance. ACS Energy Lett 5:1107–1123

    CAS  Article  Google Scholar 

  10. Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 5:6732–6743

    CAS  Article  Google Scholar 

  11. Park S, Chang WJ, Lee CW, Park S, Ahn H-Y, Nam KT (2016) Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat Energy 2:16185

    Article  CAS  Google Scholar 

  12. Wu Y, Wang P, Zhu X, Zhang Q, Wang Z, Liu Y, Zou G, Dai Y, Whangbo M-H, Huang B (2018) Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv Mater 30:1704342

    Article  CAS  Google Scholar 

  13. Zhao Z, Wu J, Zheng Y-Z, Li N, Li X, Tao X (2019) Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting. ACS Catal 9:8144–8152

    CAS  Article  Google Scholar 

  14. Cardenas-Morcoso D, Gualdrón-Reyes AF, Vitoreti ABF, García-Tecedor M, Yoon SJ, Fuente MSDL, Mora-Seró I, Gimenez S (2019) Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots. J Phys Chem L 10:630–636

    CAS  Article  Google Scholar 

  15. Zhou Y, Ding H, Liu J, LaChance AM, Xiao M, Meng Y, Sun L (2019) Gold nanoparticles immobilized on single-layer α-zirconium phosphate nanosheets as a highly effective heterogeneous catalyst. Adv Compos Hybrid Mater 2:520–529

    CAS  Article  Google Scholar 

  16. Zheng J, Zhang Y, Jing C, Zhang H, Shao Q, Ge R (2022) A visible-light active p-n heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00448-9

    Article  Google Scholar 

  17. Gao G, Xi Q, Zhou H, Zhao Y, Wu C, Wang L, Guo P, Xu J (2017) Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 9:12032–12038

    CAS  Article  Google Scholar 

  18. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122

    CAS  Article  Google Scholar 

  19. Liang J, Li X, Zuo J, Lin J, Liu Z (2021) Hybrid 0D/2D heterostructures: in-situ growth of 0D g-C3N4 on 2D BiOI for efficient photocatalyst. Adv Compos Hybrid Mater 4:1122–1136

    CAS  Article  Google Scholar 

  20. Sun Z, Wang M, Fan J, Feng R, Zhou Y, Zhang L (2021) TiO2@MIL-101(Cr) nanocomposites as an efficient photocatalyst for degradation of toluene. Adv Compos Hybrid Mater 4:1322–1329

    CAS  Article  Google Scholar 

  21. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan ABH, M, Singh A (2020) Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv Compos Hybrid Mater 3:231–242

    CAS  Article  Google Scholar 

  22. Ghosh T, Aharon S, Shpatz A, Etgar L, Ruhman S (2018) Reflectivity effects on pump-probe spectra of lead halide perovskites: comparing thin films versus nanocrystals. ACS Nano 12:5719–5725

    CAS  Article  Google Scholar 

  23. Chen J, Liu D, Al-Marri MJ, Nuuttila L, Lehtivuori H, Zheng K (2016) Photo-stability of CsPbBr 3 perovskite quantum dots for optoelectronic application. Sci China Mater 59:719–727

    CAS  Article  Google Scholar 

  24. Ma X, Yang W, Ge X, Wang C, Wei M, Yang L, Yang N, Li R, Liu W (2021) Design a novel multifunctional (CsPbBr 3/Fe3O4)@MPSs@SiO2 magneto-optical microspheres for capturing circulating tumor cells. Appl Surf Sci 551:149427

    CAS  Article  Google Scholar 

  25. Chen P, Liu Y, Zhang Z, Sun Y, Hou J, Zhao G, Zou J, Fang Y, Xu J, Dai N (2019) In situ growth of ultrasmall cesium lead bromine quantum dots into mesoporous silica matrix and its application in flexible light-emitting diode. Nanoscale 11:16499–16507

    CAS  Article  Google Scholar 

  26. Ren J, Li T, Zhou X, Dong X, Shorokhov AV, Semenov MB, Krevchik VD, Wang Y (2019) Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem Eng J 358:30–39

    CAS  Article  Google Scholar 

  27. Ren J, Zhou X, Wang Y (2020) Dual-emitting CsPbX3@ZJU-28 (X= Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications. Chem Eng J 391:123622

    CAS  Article  Google Scholar 

  28. Zhao Y, Xie C, Zhang X, Yang P (2021) CsPbX3 Quantum dots embedded in zeolitic imidazolate framework-8 microparticles for bright white light-emitting devices. ACS Appl Nano Mater 4:5478–5485

    CAS  Article  Google Scholar 

  29. Wu L-Y, Mu Y-F, Guo X-X, Zhang W, Zhang Z-M, Zhang M, Lu T-B (2019) Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew Chem Inter Ed 58:9491–9495

    CAS  Article  Google Scholar 

  30. Zhang C, Wang S, Li X, Yuan M, Turyanska L, Yang X (2020) Core/shell perovskite nanocrystals: synthesis of highly efficient and environmentally stable FAPbBr 3/CsPbBr3 for led applications. Adv Funct Mater 30:1910582

    CAS  Article  Google Scholar 

  31. Zhang C, Chen J, Kong L, Wang L, Wang S, Chen W, Mao R, Turyanska L, Jia G, Yang X (2021) Core/shell metal halide perovskite nanocrystals for optoelectronic applications. Adv Funct Mater 31:2100438

    CAS  Article  Google Scholar 

  32. Wang S, Wang H, Zhang D, Dou Y, Li W, Cao F, Yin L, Wang L, Zhang Z-J, Zhang J, Yang X (2022) Perovskite nanocrystals-polymer composites with a micro/nano structured superhydrophobic surface for stable and efficient white light-emitting diodes. Chem Eng J 437:135303

    CAS  Article  Google Scholar 

  33. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5:419–430

    CAS  Article  Google Scholar 

  34. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    CAS  Article  Google Scholar 

  35. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    CAS  Article  Google Scholar 

  36. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Zhao Y, Liu C, Fan R, Guo Z (2022) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Adv Compos Hybrid Mater 17:113–120

    CAS  Google Scholar 

  37. Huo J, Aguilera-Sigalat J, El-Hankari S, Bradshaw D (2015) Magnetic MOF microreactors for recyclable size-selective biocatalysis. Chem Sci 6:1938–1943

    CAS  Article  Google Scholar 

  38. Chen H, Shen K, Mao Q, Chen J, Li Y (2018) Nanoreactor of MOF-derived yolk−shell Co@C−N: precisely controllable structure and enhanced catalytic activity. ACS Catal 8:1417–1426

    Article  CAS  Google Scholar 

  39. Teng Z, Su X, Zheng Y, Sun J, Chen G, Tian C, Wang J, Li H, Zhao Y, Lu G (2013) Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chem Mater 25:98–105

    CAS  Article  Google Scholar 

  40. Liang T, Liu W, Liu X, Li Y, Wu W, Fan J (2021) In situ phase-transition crystallization of all-inorganic water-resistant exciton-radiative heteroepitaxial CsPbBr 3–CsPb2Br5 core–shell perovskite nanocrystals. Chem Mater 33:4948–4959

    CAS  Article  Google Scholar 

  41. Coelho AA (2003) TOPAS: general profile and structure analysis software for powder diffraction data. Bruker AXS GmbH, Karlsruhe, Germany

  42. Tong G, Chen T, Li H, Song W, Chang Y, Liu J, Yu L, Xu J, Qi Y, Jiang Y (2019) High efficient hole extraction and stable all-bromide inorganic perovskite solar cells via derivative-phase gradient bandgap architecture. Solar RRL 3:1900030

    Article  CAS  Google Scholar 

  43. Zhang T, Chen Z, Shi Y, Xu Q-H (2019) The photoluminescence mechanism of CsPb2Br 5 microplates revealed by spatially resolved single particle spectroscopy. Nanoscale 11:3186–3192

    CAS  Article  Google Scholar 

  44. DuBose JT, Kamat PV (2019) Probing perovskite photocatalysis. interfacial electron transfer between CsPbBr 3 and ferrocene redox couple. J Phys Chem Lett 10:6074–6080

    CAS  Article  Google Scholar 

  45. Lin C-H, Liu X, Wu S-H, Liu K-H, Mou C-Y (2011) Corking and uncorking a catalytic yolk-shell nanoreactor: stable gold catalyst in hollow silica nanosphere. J Phys Chem Lett 2:2984–2988

    CAS  Article  Google Scholar 

  46. Wang Y, Hu Y-J, Hao X, Peng P, Shi J-Y, Peng F, Sun R-C (2020) Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review. Adv Compos Hybrid Mater 3:267–284

  47. Ahamdi SAR, Kalaee MR, Moradi O, Nosratinia F, Abdouss M (2021) Core–shell activated carbon-ZIF-8 nanomaterials for the removal of tetracycline from polluted aqueous solution. Adv Compos Hybrid Mater 4:1384–1397

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Plan for Leading Talent of Fundamental Research of the Central China in 2020, and Intelligence Introduction Plan of Henan Province in 2021 (CXJD2021008). We greatly thank Prof. Zhitao Shen and Prof. Bo Wen for the fruitful discussions.

Funding

The authors acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/47), Taif University, Taif, Saudi Arabia. This work is supported by National Natural Science Foundation of China (No. 12074100, 12174086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feijiu Wang, Chao Li or Guoqiang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14292 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Wei, S., Alhadhrami, A. et al. Synthesis of CsPbBr3/CsPb2Br5@silica yolk-shell composite microspheres: precisely controllable structure and improved catalytic activity for dye degradation. Adv Compos Hybrid Mater 5, 1423–1432 (2022). https://doi.org/10.1007/s42114-022-00520-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00520-4

Keywords

  • CsPbBr3
  • CsPb2Br5 heterostructure
  • Composition modulation
  • Yolk-shell microspheres
  • Photocatalysis
  • Charge separation
  • Water-based system catalysis