Skip to main content

Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption

Abstract

With the rapidly developing wireless communication technology, electromagnetic pollution problems have become more prominent. Electromagnetic pollution has caused great harm to wireless equipment, precision instruments, military safety, etc., which urgently requires the development of lightweight, high-efficiency, broadband electromagnetic waves (EMW) absorbing materials. MXene is an emerging two-dimensional (2D) material with the advantages of lamellar structure, excellent conductivity, and abundant surface groups. At the same time, conducting polymers (CPs) have excellent performance in terms of conductivity, surface activity, quality, and electromagnetic loss, making them have excellent potential in EMW absorbing direction. This article examines the preparation, structure, and performance of MXene and CPs-based radar-absorbing materials (RAM). A comprehensive summary and objective analysis of the nowadays study progress on the EMW absorbing performances of MXene and CPs, and a comprehension of the absorbing mechanism are reviewed. Finally, the research direction of absorbing materials has been prospected.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

References

  1. Liu J, Zhao Z, Zhang L (2020) Toward the application of electromagnetic wave absorption by two-dimension materials. J Mater Sci: Mater Electron 32:25562–25576

    Google Scholar 

  2. Hou T, Wang B, Jia Z, Wu H, Lan D, Huang Z, Feng A, Ma M, Wu G (2019) A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J Mater Sci: Mater Electron 30(12):10961–10984

    CAS  Google Scholar 

  3. Chen H, Ma W, Huang Z, Zhang Y, Huang Y, Chen Y (2019) Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv Opt Mater 7(8):1801318

    Article  CAS  Google Scholar 

  4. Zhao B, Deng J, Zhang R, Liang L, Fan B, Bai Z, Shao G, Park CB (2018) Recent advances on the electromagnetic wave absorption properties of Ni based materials. Engineered Science 3:5–40

    Google Scholar 

  5. Liu H, Li L, Cui G, Wang X, Zhang Z, Lv X (2020) Heterostructure composites of CoS nanoparticles decorated on Ti3C2Tx nanosheets and their enhanced electromagnetic wave absorption performance. Nanomaterials (Basel) 10(9):1666

    Article  CAS  Google Scholar 

  6. Liu P, Chen S, Yao M, Yao Z, Ng VMH, Zhou J, Lei Y, Yang Z, Kong LB (2020) Double-layer absorbers based on hierarchical MXene composites for microwave absorption through optimal combination. J Mater Res 35(11):1481–1491

    CAS  Article  Google Scholar 

  7. Wang R, Li S, Hu P, Chen S, Wang JJEM, Manufacturing, (2021) Densification behavior and microstructure evolution of Mo manocrystals by microwave sintering. ES Materials & Manufacturing 13:97–105

    Google Scholar 

  8. Singh SK, Akhtar MJ, Kar KK (2018) Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl Mater Interfaces 10(29):24816–24828

    CAS  Article  Google Scholar 

  9. Deruelle F (2020) The different sources of electromagnetic fields: dangers are not limited to physical health. Electromagn Biol Med 39(2):166–175

    Article  Google Scholar 

  10. Roosli M (2008) Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review. Environ Res 107(2):277–287

    CAS  Article  Google Scholar 

  11. Liang J, Chen J, Shen H, Hu K, Zhao B, Kong J (2021) Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem Mater 33(5):1789–1798

    CAS  Article  Google Scholar 

  12. Luo F, Liu D, Cao T, Cheng H, Kuang J, Deng Y, Xie W (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater 4(3):591–601

    CAS  Article  Google Scholar 

  13. Liang L, Han G, Li Y, Zhao B, Zhou B, Feng Y, Ma J, Wang Y, Zhang R, Liu C (2019) Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces 11(28):25399–25409

    CAS  Article  Google Scholar 

  14. Liao Q, He M, Zhou Y, Nie S, Wang Y, Wang B, Yang X, Bu X, Wang R (2018) Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 34(51):15854–15863

    CAS  Article  Google Scholar 

  15. Li N, Xie X, Lu H, Fan B, Wang X, Zhao B, Zhang R, Yang R (2019) Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram Int 45(17):22880–22888

    CAS  Article  Google Scholar 

  16. Liu P, Ng VMH, Yao Z, Zhou J, Kong LB (2018) Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater Lett 229:286–289

    CAS  Article  Google Scholar 

  17. Zheng M, Wei Y, Ren J, Dai B, luo W, Ma M, Li T, Ma Y (2021) 2-aminopyridine functionalized magnetic core–shell Fe3O4@polypyrrole composite for removal of Mn (VII) from aqueous solution by double-layer adsorption. Sep Purif Technol 277:119455

    CAS  Article  Google Scholar 

  18. Zhang Z, Wang S, Lv Y, Chen X, Wu Z, Zou Y (2019) MnO2 nanostructures deposited on graphene foams for broadband and lightweight electromagnetic absorption. J Alloys Compd 810:151744

    CAS  Article  Google Scholar 

  19. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(4):906–924

    CAS  Article  Google Scholar 

  20. Zhang L, Song T, Shi L, Wen N, Wu Z, Sun C, Jiang D, Guo Z (2021) Recent progress for silver nanowires conducting film for flexible electronics. J Nanostructure Chem 11(3):323–341

    CAS  Article  Google Scholar 

  21. Bag PP, Singh GP, Singha S, Roymahapatra G (2020) Synthesis of metal-organic frameworks (MOFs) and their applications to biology, catalysis and electrochemical charge storage: a mini review. Engineered Science 13:1–10

    Google Scholar 

  22. Luo X, Yang G, Schubert DW (2021) Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv Compos Hybrid Mater 5:250–262

    Article  CAS  Google Scholar 

  23. Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4(4):979–988

    CAS  Article  Google Scholar 

  24. Zhao Y, Liu K, Hou H, Chen L-Q (2022) Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study. Mater Des 216:110555

    CAS  Article  Google Scholar 

  25. Manikandan M, Francis PN, Dhanuskodi S, Maheswari N, Muralidharan G (2018) High performance supercapacitor behavior of hydrothermally synthesized CdTe nanorods. J Mater Sci: Mater Electron 29(20):17397–17404

    CAS  Google Scholar 

  26. Fan G, Jiang Y, Xin J, Zhang Z, Fu X, Xie P, Cheng C, Liu Y, Qu Y, Sun K, Fan R (2019) Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties. ACS Sustainable Chem Eng 7(23):18765–18774

    CAS  Article  Google Scholar 

  27. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185

    CAS  Article  Google Scholar 

  28. Wu N, Du W, Hu Q, Jiang SVQJES (2020) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Engineered Science 13:11–23

    Google Scholar 

  29. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160

    Article  Google Scholar 

  30. Sultanov F, Daulbayev C, Bakbolat B, Daulbayev O (2020) Advances of 3D graphene and its composites in the field of microwave absorption. Adv Colloid Interface Sci 285:102281

    CAS  Article  Google Scholar 

  31. Zhao W, Yan Z, Qian L (2020) Graphitic carbon nitride: preparation, properties and applications in energy storage. Engineered Science 10:24–34

    CAS  Google Scholar 

  32. Zhao Z, Zhao R, Bai P, Du W, Guan R, Tie D, Naik N, Huang M, Guo Z (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: phases distribution, interfacial microstructure, and property analysis. J Alloys Compd 902:163484

    CAS  Article  Google Scholar 

  33. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122

    CAS  Article  Google Scholar 

  34. Fan Z, Wang D, Yuan Y, Wang Y, Cheng Z, Liu Y, Xie Z (2020) A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem Eng J 381:122696

    CAS  Article  Google Scholar 

  35. Khazaei M, Arai M, Sasaki T, Chung C-Y, Venkataramanan NS, Estili M, Sakka Y, Kawazoe Y (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 23(17):2185–2192

    CAS  Article  Google Scholar 

  36. Luo W, Wei Y, Zhuang Z, Lin Z, Li X, Hou C, Li T, Ma Y (2022) Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim Acta 406:139871

    CAS  Article  Google Scholar 

  37. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253

    CAS  Article  Google Scholar 

  38. Wang J, Kang H, Ma H, Liu Y, Xie Z, Wang Y, Fan Z (2021) Super-fast fabrication of MXene film through a combination of ion induced gelation and vacuum-assisted filtration. Engineered Science 15:57–66

    Google Scholar 

  39. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Fan J, Ding T, Ryu JE, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Engineered Science 9:50–59

    Google Scholar 

  40. Wei Y, Luo W, Li X, Lin Z, Hou C, Ma M, Ding J, Li T, Ma Y (2022) PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim Acta 406:139874

    CAS  Article  Google Scholar 

  41. Lipatov A, Lu H, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A (2018) Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci Adv 4(6):eaat0491.

  42. Lai S, Jeon J, Jang SK, Xu J, Choi YJ, Park JH, Hwang E, Lee S (2015) Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O). Nanoscale 7(46):19390–19396

    CAS  Article  Google Scholar 

  43. Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh PL, Zhao M, Shenoy VB, Barsoum MW, Gogotsi Y (2016) Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22):11385–11391

    CAS  Article  Google Scholar 

  44. Jin Z, Fang Y, Wang X, Xu G, Liu M, Wei S, Zhou C, Zhang Y, Xu Y (2019) Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. J Colloid Interface Sci 537:306–315

    CAS  Article  Google Scholar 

  45. Yang H, Dai J, Liu X, Lin Y, Wang J, Wang L, Wang F (2017) Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater Chem Phys 200:179–186

    CAS  Article  Google Scholar 

  46. Yan S, Cao C, He J, He L, Qu Z (2019) Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J Mater Sci: Mater Electron 30(7):6537–6543

    CAS  Google Scholar 

  47. Guo Y, Wang D, Bai T, Liu H, Zheng Y, Liu C, Shen C (2021) Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv Compos Hybrid Mater 4(3):602–613

    CAS  Article  Google Scholar 

  48. Cheng H, Pan Y, Chen Q, Che R, Zheng G, Liu C, Shen C, Liu X (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4(3):505–513

    CAS  Article  Google Scholar 

  49. Zhang Y, Liu X, Wu L, Dong W, Xia F, Chen L, Zhou N, Xia L, Hu Z-Y, Liu J, Mohamed HSH, Li Y, Zhao Y, Chen L, Su B-L (2020) A flexible, hierarchically porous PANI/MnO2 network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. J Mater Chem A 8(5):2741–2751

    CAS  Article  Google Scholar 

  50. Zhuang Z, Wang W, Wei Y, Li T, Ma M, Ma Y (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Hybrid Mater 4(4):938–945

    CAS  Article  Google Scholar 

  51. Yan J, Huang Y, Liu X, Zhao X, Li T, Zhao Y, Liu P (2021) Polypyrrole-based composite materials for electromagnetic wave absorption. Polym Rev 61:646–687

    CAS  Article  Google Scholar 

  52. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  53. Wang Y, Du Y, Xu P, Qiang R, Han X (2017) Recent advances in conjugated polymer-based microwave absorbing materials. Polymers (Basel) 9(1):29

    Article  CAS  Google Scholar 

  54. Wei Y, Luo W, Zhuang Z, Dai B, Ding J, Li T, Ma M, Yin X, Ma Y (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Mater 4(4):1082–1091

    CAS  Article  Google Scholar 

  55. Ma Y, Hou C, Zhang H, Zhang Q, Liu H, Wu S, Guo Z (2019) Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim Acta 315:114–123

    CAS  Article  Google Scholar 

  56. Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev 59(4):687–738

    CAS  Article  Google Scholar 

  57. Kruželák J, Kvasničáková A, Hložeková K, Hudec I (2021) Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv 3(1):123–172

    Article  Google Scholar 

  58. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal GAM, Ibrahim MM, El-Bahy ZM, Li Y, Huang M, Guo Z (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875

    CAS  Article  Google Scholar 

  59. Liu T, Liu N, An Q, Xiao Z, Zhai S, Li Z (2019) Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance. J Alloys Compd 802:445–457

    CAS  Article  Google Scholar 

  60. Qu B, Zhu C, Li C, Zhang X, Chen Y (2016) Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces 8(6):3730–3735

    CAS  Article  Google Scholar 

  61. Lv L, Liu J, Liu H, Liu C, Lu Y, Sun K, Fan R, Wang N, Lu N, Guo Z, Wujcik EK (2018) An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Engineered Science 2:26–42

    Google Scholar 

  62. Gogotsi Y, Huang Q (2021) MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15(4):5775–5780

    CAS  Article  Google Scholar 

  63. Jia X, Li Y, Shen B, Zheng W (2022) Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: a review. Compos B 233:109652

    CAS  Article  Google Scholar 

  64. Du B, Zhang D, Qian J, Cai M, He C, Zhou P, Shui A (2021) Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance. Adv Compos Hybrid Mater 4(4):1281–1291

    CAS  Article  Google Scholar 

  65. Arief I, Bhattacharjee Y, Prakash O, Sahu M, Suwas S, Bose S (2019) Tunable CoNi microstructures in flexible multilayered polymer films can shield electromagnetic radiation. Compos B 177:107283

    CAS  Article  Google Scholar 

  66. He L (2021) Improve thermal conductivity of polymer composites via conductive network. Nat Nanotechnol 13:1–2

    Google Scholar 

  67. Chen J, Zhu Y, Guo Z, Nasibulin AGJES (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Engineered Science 12:13–22

    CAS  Google Scholar 

  68. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Materials & Manufacturing 13:53–65

    CAS  Google Scholar 

  69. Jia H, Xing H, Ji X, Gao S (2021) Self-template and in-situ polymerization strategy to lightweight hollow MnO2@polyaniline core-shell heterojunction with excellent microwave absorption properties. Appl Surf Sci 537:147857

    CAS  Article  Google Scholar 

  70. Shang Q, Feng H, Liu J, Lian Q, Feng Z, Chen N, Qiu J, Wu H (2021) Constructing and optimizing hollow ZnxFe3-xO4@polyaniline composites as high-performance microwave absorbers. J Colloid Interface Sci 584:80–91

    CAS  Article  Google Scholar 

  71. Sushmita K, Madras G, Bose S (2020) Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS Omega 5(10):4705–4718

    CAS  Article  Google Scholar 

  72. Wu J (2021) Multichannel absorption enhancement in graphene based on metal-photonic crystal hetero-structure. ES Energy & Environment 13:25–30

    CAS  Google Scholar 

  73. Tao Y, Yan B, Fan D, Zhang N, Ma S, Wang L, Wu Y, Wang M, Zhao J, Zhang H (2020) Structural changes of starch subjected to microwave heating: a review from the perspective of dielectric properties. Trends Food Sci Technol 99:593–607

    CAS  Article  Google Scholar 

  74. Zhang P, Zhang X, Li B, Xu L, Dang F, Li B-W (2021) Enhanced microwave absorption performance in an ultralight porous single-atom Co–N–C absorber. Adv Compos Hybrid Mater 4(4):1292–1301

    CAS  Article  Google Scholar 

  75. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y, Che R (2016) CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with strong wideband microwave absorption. Adv Mater 28(3):486–490

    CAS  Article  Google Scholar 

  76. Cao M-S, Cai Y-Z, He P, Shu J-C, Cao W-Q, Yuan J (2019) 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302

    CAS  Article  Google Scholar 

  77. Cheng Y, Zhao H, Yang Z, Lv J, Cao J, Qi X, Ji G, Du Y (2018) An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. J Alloys Compd 762:463–472

    CAS  Article  Google Scholar 

  78. Yang Q, Shi Y, Fang Y, Dong Y, Ni Q, Zhu Y, Fu Y (2019) Construction of polyaniline aligned on magnetic functionalized biomass carbon giving excellent microwave absorption properties. Compos Sci Technol 174:176–183

    CAS  Article  Google Scholar 

  79. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4(3):707–715

    CAS  Article  Google Scholar 

  80. Yang M, Wang Z, Ji R, Jin R, Liu J, Song X, Nan Z, Zhang M (2021) Tunable microwave absorbing properties based on facile microwave-induced in-situ formation of interfacial structures. Appl Surf Sci 545:149079

    CAS  Article  Google Scholar 

  81. Feng W, Luo H, Wang Y, Zeng S, Deng L, Zhou X, Zhang H, Peng S (2018) Ti3C2 MXene: a promising microwave absorbing material. RSC Adv 8(5):2398–2403

    CAS  Article  Google Scholar 

  82. Liang L, Li Q, Yan X, Feng Y, Wang Y, Zhang HB, Zhou X, Liu C, Shen C, Xie X (2021) Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4):6622–6632

    CAS  Article  Google Scholar 

  83. Yang X, Fan B, Wang X, Tang X, Wang J, Tong G, Wang X, Tian W (2021) HCl induced structure evolution and dual-frequency broadband microwave absorption of PANI hierarchical microtubes. J Environ Chem Eng 9(4):105672

    CAS  Article  Google Scholar 

  84. Guo Z, Li A, Sun Z, Yan Z, Liu H, Qian L (2022) Negative permittivity behavior in microwave frequency from cellulose-derived carbon nanofibers. Adv Compos Hybrid Mater 5:50–57

    CAS  Article  Google Scholar 

  85. Green M, Chen X (2019) Recent progress of nanomaterials for microwave absorption. J Materiomics 5(4):503–541

    Article  Google Scholar 

  86. An Y, Feng S, Shao G, Yuan W, Sun K, Li X, Fan RJES (2020) Influence of the annealing process on magnetic performance of iron based soft magnetic composites. Engineered Science 11:85–91

    CAS  Google Scholar 

  87. Zhang Y, Wang X, Cao M (2018) Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res 11(3):1426–1436

    CAS  Article  Google Scholar 

  88. Wu H, Zhang Y, Yin R, Zhao W, Li X, Qian L (2017) Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites. Adv Compos Hybrid Mater 1(1):168–176

    Article  CAS  Google Scholar 

  89. Deokate RJ (2021) chemically deposited NiCo2O4 thin films for electrochemical study. ES Materials & Manufacturing 11:16–19

    CAS  Google Scholar 

  90. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4(3):534–542

    CAS  Article  Google Scholar 

  91. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4(1):51–64

    CAS  Article  Google Scholar 

  92. Wang X-X, Ma T, Shu J-C, Cao M-S (2018) Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem Eng J 332:321–330

    CAS  Article  Google Scholar 

  93. Wang H, Meng F, Li J, Li T, Chen Z, Luo H, Zhou Z (2018) Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chem Eng 6(9):11801–11810

    CAS  Article  Google Scholar 

  94. Yang H, Zhang X, Xiong Z, Shen Z, Liu C, Xie Y (2021) Cu2O@nanoporous carbon composites derived from Cu-based MOFs with ultrabroad-bandwidth electromagnetic wave absorbing performance. Ceram Int 47(2):2155–2164

    CAS  Article  Google Scholar 

  95. Lu X, Zhu D, Li X, Li M, Chen Q, Qing Y (2021) Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater 4(4):946–956

    CAS  Article  Google Scholar 

  96. Guo J, Chen Z, Xu X, Li X, Liu H, Xi S, Abdul W, Wu Q, Zhang P, Xu BB, Zhu J, Guo Z (2022) Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv Compos Hybrid Mater.https://doi.org/10.1007/s42114-022-00417-2.

  97. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Bin XuB, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano micro Lett 14(1):118

    CAS  Article  Google Scholar 

  98. Wang W, Deng X, Liu D, Luo F, Cheng H, Cao T, Li Y, Deng Y, Xie W (2022) Broadband radar-absorbing performance of square-hole structure. Adv Compos Hybrid Mater 5:525–535

    CAS  Article  Google Scholar 

  99. Guo C, Zhang W, Wang R, Qi S (2019) Enhanced electromagnetic wave absorption by optimized impedance matching: covalently bonded polyaniline nanorods over graphene nanoplates. J Mater Sci: Mater Electron 30(21):19426–19436

    CAS  Google Scholar 

  100. Hu P, Dong S, Yuan F, Li X, Hong C (2022) Hollow carbon microspheres modified with NiCo2S4 nanosheets as a high-performance microwave absorber. Adv Compos Hybrid Mater 5:469–480

    CAS  Article  Google Scholar 

  101. Zhang Z, Zhao Y, Li Z, Zhang L, Liu Z, Long Z, Li Y, Liu Y, Fan R, Sun K, Zhang Z (2021) Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv Compos Hybrid Mater 5(1):513–524

    Article  CAS  Google Scholar 

  102. Yang N, Luo ZX, Chen SC, Wu G, Wang YZ (2020) Fe3O4 nanoparticle/N-doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl Mater Interfaces 12(16):18952–18963

    CAS  Article  Google Scholar 

  103. Qiu Y, Lin Y, Yang H, Wang L, Wang M, Wen B (2020) Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem Eng J 383:123207

    CAS  Article  Google Scholar 

  104. Li C, Zhang Y, Ji S, Jiang X, Zhang Z, Yu L (2017) Microwave absorption properties of γ-Fe2O3/(SiO2)x–SO3H/polypyrrole core/shell/shell microspheres. J Mater Sci 53(7):5270–5286

    Article  CAS  Google Scholar 

  105. Yang M, Yuan Y, Li Y, Sun X, Wang S, Liang L, Ning Y, Li J, Yin W, Li Y (2020) Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl Mater Interfaces 12(29):33128–33138

    CAS  Article  Google Scholar 

  106. Deng B, Xiang Z, Xiong J, Liu Z, Yu L, Lu W (2020) Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett 12(1):55

    CAS  Article  Google Scholar 

  107. Cao M, Han C, Wang X, Zhang M, Zhang Y, Shu J, Yang H, Fang X, Yuan J (2018) Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J Mater Chem C 6(17):4586–4602

    CAS  Article  Google Scholar 

  108. Liang X, Quan B, Chen J, Tang D, Zhang B, Ji G (2017) Strong electric wave response derived from the hybrid of lotus roots-like composites with tunable permittivity. Sci Rep 7(1):9462

    Article  CAS  Google Scholar 

  109. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A (2016) Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2(12):1600255

    Article  CAS  Google Scholar 

  110. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4(2):274–285

    CAS  Article  Google Scholar 

  111. Li X, Yin X, Liang S, Li M, Cheng L, Zhang L (2019) 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146:210–217

    CAS  Article  Google Scholar 

  112. Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134(40):16909–16916

    CAS  Article  Google Scholar 

  113. Yan J, Huang Y, Chen C, Liu X, Liu H (2019) The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers. Carbon 152:545–555

    CAS  Article  Google Scholar 

  114. Xu J, Hao Y, Bi K, Zhang R, Huang S, Zhou J (2019) Microwave orbital angular momentum beam generation based on circularly polarized metasurface antenna array. Engineered Science 6:30–35

    Google Scholar 

  115. Eskandari F, Shabani P, Yousefi R (2020) Simultaneous protonation/deprotonation mechanism in polyaniline-based devices as complementary resistive switches. Org Electron 79:105628

    CAS  Article  Google Scholar 

  116. Lin T, Yu H, Wang L, Fahad S, Khan A, K-u-R N, Haq F, Nazir A, Amin BU (2021) A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J Mater Sci 56(9):5449–5478

    CAS  Article  Google Scholar 

  117. Skabara PJ, Serebryakov IM, Perepichka IFJ, Jot CS, Perkin Transactions 2 (1999) Electron acceptors of the fluorene series. Part 8. 1 Electrochemical and intramolecular charge transfer studies of thiophene functionalised fluorenes. J Chem Soc Perk Transac 3:505-514

  118. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359

    CAS  Article  Google Scholar 

  119. Salim O, Mahmoud KA, Pant KK, Joshi RK (2019) Introduction to MXenes: synthesis and characteristics. Mater Today Chem 14:100191

    CAS  Article  Google Scholar 

  120. Wei Y, Zheng M, Luo W, Dai B, Ren J, Ma M, Li T, Ma Y (2022) All pseudocapacitive MXene-MnO2 flexible asymmetric supercapacitor. J Energy Storage 45:103715

    Article  Google Scholar 

  121. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644

    CAS  Article  Google Scholar 

  122. Maleski K, Mochalin VN, Gogotsi Y (2017) Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater 29(4):1632–1640

    CAS  Article  Google Scholar 

  123. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4:1716

    Article  CAS  Google Scholar 

  124. Wu Y, Nie P, Wang J, Dou H, Zhang X (2017) Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl Mater Interfaces 9(45):39610–39617

    CAS  Article  Google Scholar 

  125. Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y (2015) Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater 27(23):3501–3506

    CAS  Article  Google Scholar 

  126. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322

    CAS  Article  Google Scholar 

  127. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide clay’ with high volumetric capacitance. Nature 516(7529):78–81

    CAS  Article  Google Scholar 

  128. He P, Wang XX, Cai YZ, Shu JC, Zhao QL, Yuan J, Cao MS (2019) Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13):6080–6088

    CAS  Article  Google Scholar 

  129. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8(32):21011–21019

    CAS  Article  Google Scholar 

  130. Li H, Li X, Liang J, Chen Y (2019) Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater 9(15):1803987

    Article  CAS  Google Scholar 

  131. Wu X, Han B, Zhang H-B, Xie X, Tu T, Zhang Y, Dai Y, Yang R, Yu Z-Z (2020) Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem Eng J 381:122622

    CAS  Article  Google Scholar 

  132. Wu X, Wang Z, Yu M, Xiu L, Qiu J (2017) Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater 29(24):1607017

    Article  CAS  Google Scholar 

  133. Kirkpatrick J, Enion D, Burd DJB (1995) Hydrofluoric acid burns: a review. Burns 21(7):483–493

    CAS  Article  Google Scholar 

  134. Lukatskaya MR, Bak S-M, Yu X, Yang X-Q, Barsoum MW, Gogotsi Y (2015) Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater 5(15):1500589

    Article  CAS  Google Scholar 

  135. Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D (2018) Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed Engl 57(21):6115–6119

    CAS  Article  Google Scholar 

  136. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005

    CAS  Article  Google Scholar 

  137. Sun W, Shah SA, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green MJ (2017) Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A 5(41):21663–21668

    CAS  Article  Google Scholar 

  138. Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, Blom PWM, Feng X (2018) Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed Engl 57(47):15491–15495

    CAS  Article  Google Scholar 

  139. Li M, Lu J, Luo K, Li Y, Chang K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson POA, Du S, Chai Z, Huang Z, Huang Q (2019) Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 141(11):4730–4737

    CAS  Article  Google Scholar 

  140. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x. J Chem Soc, Chem Commun 16:578–580

    Article  Google Scholar 

  141. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484

    CAS  Article  Google Scholar 

  142. Ma Y, Hou C, Zhang H, Qiao M, Chen Y, Zhang H, Zhang Q, Guo Z (2017) Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures. J Mater Chem A 5(27):14041–14052

    CAS  Article  Google Scholar 

  143. Ma Y, Zhuang Z, Ma M, Yang Y, Li W, lin J, Dong M, Wu S, Ding T, Guo Z (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182:121808

    Article  CAS  Google Scholar 

  144. Yang Y, Zhang Y, Wei Z (2013) Supramolecular helices: chirality transfer from conjugated molecules to structures. Adv Mater 25(42):6039–6049

    CAS  Article  Google Scholar 

  145. Wu X, Fu C, Zhang ZM (2020) Chiral absorbers based on polarization conversion and excitation of magnetic polaritons. ES Energy & Environment 8:5–14

    Google Scholar 

  146. Han WJ, Lee JH, Choi HJ (2020) Poly(diphenylamine)/polyaniline core/shell composite nanospheres synthesized using a reactive surfactant and their electrorheology. Polymer 188:122161

    CAS  Article  Google Scholar 

  147. Zeng F, Qin Z, Liang B, Li T, Liu N, Zhu M (2015) Polyaniline nanostructures tuning with oxidants in interfacial polymerization system. Prog Nat Sci: Mater Int 25(5):512–519

    CAS  Article  Google Scholar 

  148. Hamlaoui FZ, Naar N (2022) Improvement of the structural and electrical properties of PMMA/PANI-MA blends synthesized by interfacial in situ polymerization in a continuous organic phase. Polym Bull 79:37–63

    CAS  Article  Google Scholar 

  149. de Barros RA, de Azevedo WM, de Aguiar FM (2003) Photo-induced polymerization of polyaniline. Mater Charact 50(2–3):131–134

    Article  CAS  Google Scholar 

  150. Kobayashi N, Teshima K, Hirohashi R (1998) Conducting polymer image formation with photoinduced electron transfer reaction. J Mater Chem 8(3):497–506

    CAS  Article  Google Scholar 

  151. Zhang S, Zhu K, Lv G, Wang G, Yu D, Shao J (2015) UV-catalytic preparation of polypyrrole nanoparticles induced by H2O2. J Physical Chem C 119(32):18707–18718

    CAS  Article  Google Scholar 

  152. Guniat L, Caroff P, Fontcuberta IMA (2019) Vapor phase growth of semiconductor nanowires: key developments and open questions. Chem Rev 119(15):8958–8971

    CAS  Article  Google Scholar 

  153. Zhao P, Wang N, Yao M, Ren H, Hu W (2020) Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chem Eng J 380:122488

    CAS  Article  Google Scholar 

  154. Wang N, Zhao P, Liang K, Yao M, Yang Y, Hu W (2017) CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem Eng J 307:105–112

    CAS  Article  Google Scholar 

  155. Castro-Carranza A, Nolasco JC, Bley S, Rückmann M, Meierhofer F, Mädler L, Voss T, Gutowski J (2016) Effects of FeCl3as oxidizing agent on the conduction mechanisms in polypyrrole (PPy)/pc–ZnO hybrid heterojunctions grown by oxidative chemical vapor deposition. J Polym Sci, Part B: Polym Phys 54(15):1537–1544

    CAS  Article  Google Scholar 

  156. Trujillo NJ, Barr MC, Im SG, Gleason KK (2010) Oxidative chemical vapor deposition (oCVD) of patterned and functional grafted conducting polymer nanostructures. J Mater Chem 20(19):3968

    CAS  Article  Google Scholar 

  157. Elayappan V, Murugadoss V, Fei Z, Dyson PJ, Angaiah S (2020) Influence of polypyrrole incorporated electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous composite membrane electrolyte on the photovoltaic performance of dye sensitized solar cell. Engineered Science 10(3):78–84

    CAS  Google Scholar 

  158. Elkais AR, Gvozdenović MM, Jugović BZ, Stevanović JS, Nikolić ND, Grgur BN (2011) Electrochemical synthesis and characterization of polyaniline thin film and polyaniline powder. Prog Org Coat 71(1):32–35

    CAS  Article  Google Scholar 

  159. Liu X, Wu Z, Yin Y (2017) Hierarchical NiCo2S4 @PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem Eng J 323:330–339

    CAS  Article  Google Scholar 

  160. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923

    CAS  Article  Google Scholar 

  161. Ahmadi SH, Manbohi A (2014) Different morphologies of polypyrrole produced by flow-through and batch electropolymerizations: application in electrochemically controlled in-tube solid phase microextraction. RSC Adv 4(110):64393–64401

    CAS  Article  Google Scholar 

  162. Chandler GK, Pletcher D (1986) The electrodeposition of metals onto polypyrrole films from aqueous solution. J Appl Electrochem 16(1):62–68

    CAS  Article  Google Scholar 

  163. Debiemme-Chouvy C, Fakhry A, Pillier F (2018) Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim Acta 268:66–72

    CAS  Article  Google Scholar 

  164. Zhou J, Kang Q, Xu S, Li X, Liu C, Ni L, Chen N, Lu C, Wang X, Peng L, Guo X, Ding W, Hou W (2022) Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors. Nano Res 15:285–295

    CAS  Article  Google Scholar 

  165. Zhang CJ, Pinilla S, McEvoy N, Cullen CP, Anasori B, Long E, Park S-H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X, Duesberg GS, Gogotsi Y, Nicolosi V (2017) Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater 29(11):4848–4856

    CAS  Article  Google Scholar 

  166. Liu LX, Chen W, Zhang HB, Wang QW, Guan F, Yu ZZ (2019) Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Funct Mater 29(44):1905197

    CAS  Article  Google Scholar 

  167. Yin G, Wang Y, Wang W, Yu D (2020) Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy. Colloids Surf, A 601:125047

    CAS  Article  Google Scholar 

  168. Yin G, Wang Y, Wang W, Qu Z, Yu D (2021) A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-by-layer assembly. Adv Mater Interfaces 8(6):2001893

    CAS  Article  Google Scholar 

  169. Xu H, Zheng D, Liu F, Li W, Lin J (2020) Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J Mater Chem A 8(12):5853–5858

    CAS  Article  Google Scholar 

  170. Wu W, Wang C, Zhao C, Wei D, Zhu J, Xu Y (2020) Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for high-performance symmetric supercapacitors. J Colloid Interface Sci 580:601–613

    CAS  Article  Google Scholar 

  171. Boota M, Paranthaman MP, Naskar AK, Gogotsi Y, Li Y, Akato KJC (2015) Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life. Chemsuschem 8(21):3576–3581

    CAS  Article  Google Scholar 

  172. Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28(7):1517–1522

    CAS  Article  Google Scholar 

  173. Hawkins SJ, Ratcliffe NM (2000) A study of the effects of acid on the polymerisation of pyrrole, on the oxidative polymerisation of pyrrole and on polypyrrole. J Mater Chem 10(9):2057–2062

    CAS  Article  Google Scholar 

  174. Chen C, Boota M, Xie X, Zhao M, Anasori B, Ren CE, Miao L, Jiang J, Gogotsi Y (2017) Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. J Mater Chem A 5(11):5260–5265

    CAS  Article  Google Scholar 

  175. Wu W, Niu D, Zhu J, Gao Y, Wei D, Liu X, Wang F, Wang L, Yang L (2019) Organ-like Ti3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors. J Electroanal Chem 847:113203

    CAS  Article  Google Scholar 

  176. Zhu M, Huang Y, Deng Q, Zhou J, Pei Z, Xue Q, Huang Y, Wang Z, Li H, Huang Q, Zhi C (2016) Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6(21):1600969

    Article  CAS  Google Scholar 

  177. Jian X, He M, Chen L, Zhang M-m, Li R, Gao L-j, Fu F, Liang Z-h (2019) Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochim Acta 318:820–827

    CAS  Article  Google Scholar 

  178. Qing Y, Zhou W, Luo F, Zhu D (2016) Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram Int 42(14):16412–16416

    CAS  Article  Google Scholar 

  179. He P, Cao M-S, Cai Y-Z, Shu J-C, Cao W-Q, Yuan J (2020) Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157:80–89

    CAS  Article  Google Scholar 

  180. Liu P, Yao Z, Ng VMH, Zhou J, Kong LB, Yue K (2018) Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos A 115:371–382

    CAS  Article  Google Scholar 

  181. Liang L, Yang R, Han G, Feng Y, Zhao B, Zhang R, Wang Y, Liu C (2020) Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl Mater Interfaces 12(2):2644–2654

    CAS  Article  Google Scholar 

  182. Li X, You W, Wang L, Liu J, Wu Z, Pei K, Li Y, Che R (2019) Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl Mater Interfaces 11(47):44536–44544

    CAS  Article  Google Scholar 

  183. Zhao Y, Liu L, Han J, Wu W, Tong G (2017) Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high Snoeks limit. J Alloys Compd 728:100–111

    CAS  Article  Google Scholar 

  184. Pan F, Yu L, Xiang Z, Liu Z, Deng B, Cui E, Shi Z, Li X, Lu W (2021) Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 172:506–515

    CAS  Article  Google Scholar 

  185. Peng Z, Jiang Q, Peng P, Li F-F (2020) NH3-activated fullerene derivative hierarchical microstructures to porous Fe3O4/N-C for oxygen reduction reaction and Zn-air battery. Engineered Science 14(2):27–38

    Google Scholar 

  186. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4(4):1226–1238

    CAS  Article  Google Scholar 

  187. Wang C, Wu X, Wang F, Zhang X (2021) Optimization design of a multilayer structure for broadband and direction-selective emissivity. ES Energy & Environment 11:84–92

    Google Scholar 

  188. Qiu Y, Xu M, Li Q, Huang R, Wang J (2021) A high-temperature near-perfect solar selective absorber combining tungsten nanohole and nanoshuriken arrays. ES Energy & Environment 13:77–90

    CAS  Google Scholar 

  189. Oyharçabal M, Olinga T, Foulc M-P, Lacomme S, Gontier E, Vigneras V (2013) Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites. Compos Sci Technol 74:107–112

    Article  CAS  Google Scholar 

  190. Haba Y, Segal E, Narkis M, Titelman G, Siegmann A (1999) Polymerization of aniline in the presence of DBSA in an aqueous dispersion. Synth Met 106(1):59–66

    CAS  Article  Google Scholar 

  191. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew Chem 116(43):5941–5945

    Article  Google Scholar 

  192. Oyharçabal M, Olinga T, Foulc M-P, Vigneras V (2012) Polyaniline/clay as nanostructured conductive filler for electrically conductive epoxy composites. Influence of filler morphology, chemical nature of reagents, and curing conditions on composite conductivity. Synth Met 162(7–8):555–562

  193. Yu L, Yu L, Dong Y, Zhu Y, Fu Y, Ni Q (2019) Compressible polypyrrole aerogel as a lightweight and wideband electromagnetic microwave absorber. J Mater Sci: Mater Electron 30(6):5598–5608

    CAS  Google Scholar 

  194. Tian C, Du Y, Xu P, Qiang R, Wang Y, Ding D, Xue J, Ma J, Zhao H, Han X (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7(36):20090–20099

    CAS  Article  Google Scholar 

  195. Yang H, Han N, Lin Y, Zhang G, Wang L (2016) Enhanced microwave absorbing properties of PANI/CoFe2O4/PVDF composite. RSC Adv 6(102):100585–100589

    CAS  Article  Google Scholar 

  196. Li Y, Wang J, Li H, Zhang B, Cui Y, Cai J, Wang Y, Zhang Y, Bao Z, Zhang Y, Wu Y (2020) Effect of conductive PANI vs. insulative PS shell coated Ni nanochains on electromagnetic wave absorption. J Alloys Compd 821:153531

  197. Wei H, Dong J, Fang X, Zheng W, Sun Y, Qian Y, Jiang Z, Huang Y (2019) Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol 169:52–59

    CAS  Article  Google Scholar 

  198. Tong Y, He M, Zhou Y, Zhong X, Fan L, Huang T, Liao Q, Wang Y (2018) Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Appl Surf Sci 434:283–293

    CAS  Article  Google Scholar 

  199. Gao X, Wang B, Wang K, Xu S, Liu S, Liu X, Jia Z, Wu G (2021) Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J Colloid Interface Sci 583:510–521

    CAS  Article  Google Scholar 

  200. Wang Y, Gao X, Zhang L, Wu X, Wang Q, Luo C, Wu G (2019) Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl Surf Sci 480:830–838

    CAS  Article  Google Scholar 

  201. Jin L, Wang J, Wu F, Yin Y, Zhang B (2021) MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: optimum composition and performance evaluation. Carbon 182:770–780

    CAS  Article  Google Scholar 

  202. Hou T, Wang B, Ma M, Feng A, Huang Z, Zhang Y, Jia Z, Tan G, Cao H, Wu G (2020) Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos B 180:107577

    CAS  Article  Google Scholar 

  203. He J, Liu S, Deng L, Shan D, Cao C, Luo H, Yan S (2020) Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl Surf Sci 504:144210

    CAS  Article  Google Scholar 

  204. Qian Y, Wei H, Dong J, Du Y, Fang X, Zheng W, Sun Y, Jiang Z (2017) Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram Int 43(14):10757–10762

    CAS  Article  Google Scholar 

  205. Li X, Yin X, Han M, Song C, Xu H, Hou Z, Zhang L, Cheng L (2017) Ti3C2MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 5(16):4068–4074

    CAS  Article  Google Scholar 

  206. Peng Y, Deng L, Luo H, Huang S (2020) Tailoring microwave electromagnetic responses in Ti3C2Tx MXene with CoNi-alloy nanoparticles decoration via mildd hydrothermal method. Results Phys 19:103516

    Article  Google Scholar 

  207. Cui Y, Yang K, Wang J, Shah T, Zhang Q, Zhang B (2021) Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 172:1–14

    CAS  Article  Google Scholar 

  208. Zhang X, Wang H, Hu R, Huang C, Zhong W, Pan L, Feng Y, Qiu T, Zhang C, Yang J (2019) Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl Surf Sci 484:383–391

    CAS  Article  Google Scholar 

  209. Wang Y, Yang J, Chen Z, Hu Y (2019) A new flexible and ultralight carbon foam/Ti3C2Tx MXene hybrid for high-performance electromagnetic wave absorption. RSC Adv 9(70):41038–41049

    CAS  Article  Google Scholar 

  210. Ding J, Chen F, Chen J, Liang J, Kong J (2020) MXene-derived TiC/SiBCN ceramics with excellent electromagnetic absorption and high-temperature resistance. J Am Ceram Soc 104(4):1772–1784

    Article  CAS  Google Scholar 

  211. Cui C, Guo R, Ren E, Xiao H, Zhou M, Lai X, Qin Q, Jiang S, Qin W (2021) MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem Eng J 405:126626

    CAS  Article  Google Scholar 

  212. Zhou C, Wang X, Luo H, Deng L, Wang S, Wei S, Zheng Y, Jia Q, Liu J (2019) Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl Surf Sci 494:540–550

    CAS  Article  Google Scholar 

  213. Yu L, Yu L, Dong Y, Zhu Y, Fu Y, Ni Q (2019) Compressible polypyrrole aerogel as a lightweight and wideband electromagnetic microwave absorber. J Mater Sci: Mater Electron 301(6):5598–5608

    Google Scholar 

  214. Zhan Y, Zhao R, Xiang X, He S, Zhao S, Xue W (2019) Hierarchical core/shell bamboo-like polypyrrole nanofibers/Fe3O4 hybrids with superior microwave absorption performance. Compos Interfaces 26(12):1087–1100

    CAS  Article  Google Scholar 

  215. Zhang M, Ling H, Ding S, Xie Y, Cheng T, Zhao L, Wang T, Bian H, Lin H, Li Z, Meng A (2021) Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 174:248–259

    CAS  Article  Google Scholar 

  216. Wen M, Zhao Y, Li Z, Lai S, Zeng Q, Liu C, Liu Y (2021) Preparation of lignin-based carbon/polyaniline composites for advanced microwave absorber. Diamond Relat Mater 111:108219

    CAS  Article  Google Scholar 

  217. Hou T, Jia Z, Feng A, Zhou Z, Liu X, Lv H, Wu G (2021) Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J Mater Sci Technol 68:61–69

    CAS  Article  Google Scholar 

  218. Ding J, Cheng L (2021) Core-shell Fe3O4@SiO2@PANI composite: preparation, characterization, and applications in microwave absorption. J Alloys Compd 881:160574

    CAS  Article  Google Scholar 

  219. Di X, Wang Y, Lu Z, Cheng R, Wu X (2021) Design of biomass-derived magnetic carbon/polyaniline with hierarchical network for superior microwave absorption. J Mater Sci: Mater Electron 32(14):18790–18807

    CAS  Google Scholar 

  220. Zhao X, Huang Y, Yan J, Liu X, Ding L, Zong M, Liu P, Li T (2021) Excellent electromagnetic wave absorption properties of the ternary composite ZnFe2O4@PANI-rGO optimized by introducing covalent bonds. Compos Sci Technol 210:108801

    CAS  Article  Google Scholar 

  221. Zhang Z, Wang G, Gu W, Zhao Y, Tang S, Ji G (2022) A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J Colloid Interface Sci 605:193–203

    CAS  Article  Google Scholar 

  222. Liu T, Liu N, Zhai S, Gao S, Xiao Z, An Q, Yang D (2019) Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. J Alloys Compd 779:831–843

    CAS  Article  Google Scholar 

  223. Li J, Ji H, Xu Y, Zhang J, Yan Y (2020) Three-dimensional graphene supported Fe3O4 coated by polypyrrole toward enhanced stability and microwave absorbing properties. J Mater Res Technol 9(1):762–772

    CAS  Article  Google Scholar 

  224. Li S, Huang Y, Zhang N, Zong M, Liu P (2019) Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material. J Alloys Compd 774:532–539

    CAS  Article  Google Scholar 

  225. Wang Y, Zhang W, Wu X, Luo C, Wang Q, Li J, Hu L (2017) Conducting polymer coated metal-organic framework nanoparticles: facile synthesis and enhanced electromagnetic absorption properties. Synth Met 228:18–24

    CAS  Article  Google Scholar 

  226. Lei Y, Yao Z, Li S, Zhou J, Haidry AA, Liu P (2020) Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram Int 46(8):10006–10015

    CAS  Article  Google Scholar 

  227. Sang G, Xu P, Yan T, Murugadoss V, Naik N, Ding Y, Guo Z (2021) Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nanomicro Lett 13(1):153

    CAS  Google Scholar 

  228. Wang Y, Wang P, Du Z, Liu C, Shen C, Wang Y (2022) Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv Compos Hybrid Mater 5:209–219

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the support of the Natural Science Foundation of Shandong (ZR2021ME019, ZR2019BB063). The authors extend their gratitude to the environmental and function material team, supported by the Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation. The authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number “IF_2020_NBU-433”.

Funding

This work is supported by the Natural Science Foundation of Shandong (ZR2021ME019, ZR2019BB063). The Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia funded this research work through the project number “X_2020__IF”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Ma, Hamdy Khamees Thabet or Tingxi Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, B., Ma, Y., Dong, F. et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv Compos Hybrid Mater 5, 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00510-6

Keywords

  • Electromagnetic wave
  • MXene
  • Conducting polymer
  • Composite
  • Absorption