Skip to main content

Enhanced energy storage of lead-free mixed oxide core double-shell barium strontium zirconate titanate@magnesium aluminate@zinc oxide-boron trioxide-silica ceramic nanocomposites

Abstract

Ba0.8Sr0.2Zr0.1Ti0.9O3@MgO-Al2O3@ZnO-B2O3-SiO2 (BSZT@MgO-Al2O3@ZBSO) core double-shell lead-free nanoceramic is prepared by facile protocol. The protocol involves three steps of (a) BSZT synthesis by co-precipitation, (b) coating of MgO-Al2O3 layer through co-precipitation, and (c) ZBSO deposition via sol-precipitation method. The diameter of the resultant BSZT@MgO-Al2O3@ZBSO core double-shell nanoparticles is about 280 nm, and the average thicknesses of the MgO-Al2O3 and ZBSO layers are about 8 and 13 nm, respectively. The physical and chemical properties of BSZT@MgO-Al2O3@ZBSO are tuned by varying the ratio between MgO and Al2O3 of MgO-Al2O3 layer. The results reveal that the grain size increases with the decrease in the MgO/Al2O3 ratio, while the dielectric properties initially increase and then decrease with increase of Al2O3 content. After sintering at 1150 °C for 2 h, the MgO-Al2O3 in the interlayer self-assembled into a MgAl2O4 spinel phase. Thus, fine-grained relaxor ferroelectric BSZT@MgAl2O4@ZBSO core double-shell ceramic nanoceramics (grain size ≤ 300 nm) were obtained. The lead-free core double-shell nanoparticles with Mg/Al ratio of 4:2 exhibit the maximum energy storage density of 0.91 J/cm3 under a maximum polarization field of 28.08 kV/mm.

Graphical abstract

Enhanced energy storage was observed in the lead-free mixed oxide core double-shell barium strontium zirconate titanate@magnesium aluminate@zinc oxide-boron trioxide-silica nanoceramics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111. https://doi.org/10.1016/j.partic.2021.11.013

  2. Cheng W, Wang YM, Ge SS, Ding XQ, Cui ZW, Shao Q (2021) One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Adv Compos Hybrid Mater 4:150. https://doi.org/10.1007/s42114-020-00199-5

    CAS  Article  Google Scholar 

  3. Kumar R, Umar A, Kumar R, Chauhan MS, Kumar G, Han SC (2021) Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye. Eng Sci 16:288. https://doi.org/10.30919/es8d548

  4. Nandanwar R, Bamne J, Singh N, Taiwade K, Chandel V, Sharma PK, Singh P, Umar A, Haque FZ (2022) Synthesis of titania/silica nanocomposite for enhanced photodegradation of methylene blue and methyl orange dyes under UV and mercury lights. ES Materials and Manufacturing 16:78. https://doi.org/10.30919/esmm5f628

  5. Sayyed SA, Beedri NI, Bhujbal PK, Shaikh SF, Pathan HM (2020) Eosin-Y sensitized Bi-layered ZnO nanoflower-CeO2 photoanode for dye-sensitized solar cells application. ES Materials and Manufacturing 10:45. https://doi.org/10.30919/esmm5f939

  6. Guo L, Zhang YF, Zheng JJ, Shang LQ, Shi YJ, Wu Q, Liu XX, Wang YM, Shi LQ, Shao Q (2021) Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). Adv Compos Hybrid Mater 4:819. https://doi.org/10.1007/s42114-021-00260-x

    CAS  Article  Google Scholar 

  7. Zhang FH, Cheng W, Yu ZH, Ge SS, Shao Q, Pan D, Liu B, Wang XJ, Guo ZH (2021) Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. Adv Compos Hybrid Mater 4:1330. https://doi.org/10.1007/s42114-021-00346-6

    CAS  Article  Google Scholar 

  8. Khater HM, El-Nagar AM (2020) Preparation of sustainable of eco-friendly MWCNT-geopolymer composites with superior sulfate resistance. Adv Compos Hybrid Mater 3:375. https://doi.org/10.1007/s42114-020-00170-4

    CAS  Article  Google Scholar 

  9. Chen LQ, Zhao YH (2022) From classical thermodynamics to phase-field method. Prog Mater Sci 124:100868. https://doi.org/10.1016/j.pmatsci.2021.100868

    CAS  Article  Google Scholar 

  10. Zhao YH, Zhang B, Hou H, Chen WP, Wang M (2019) Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J Mater Sci Technol 35:1044. https://doi.org/10.1016/j.jmst.2018.12.009

    Article  Google Scholar 

  11. Qu KQ, Sun Z, Shi C, Wang WC, Xiao LD, Tian JY, Huang ZH, Guo ZH (2021) Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)–derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv Compos Hybrid Mater 4:670. https://doi.org/10.1007/s42114-021-00293-2

    CAS  Article  Google Scholar 

  12. Pan D, Su FM, Liu CT, Guo ZH (2020) Research progress for plastic waste management and manufacture of value-added products. Adv Compos Hybrid Mater 3:443. https://doi.org/10.1007/s42114-020-00190-0

    CAS  Article  Google Scholar 

  13. Ma Y, Xie X, Yang W, Yu Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(4):1–19. https://doi.org/10.1007/s42114-021-00358-2

    CAS  Article  Google Scholar 

  14. Khan SH, Pathak B, Fulekar MH (2020) A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures. Adv Compos Hybrid Mater 3(1). https://doi.org/10.1007/s42114-020-00174-0

  15. Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater 1–14. https://doi.org/10.1007/s42114-022-00435-0

  16. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 1–14. https://doi.org/10.1007/s42114-021-00211-6

  17. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334. https://doi.org/10.1126/science.1127798

    CAS  Article  Google Scholar 

  18. Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan MT, Liu H (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29:1601727. https://doi.org/10.1002/adma.201601727

    CAS  Article  Google Scholar 

  19. Sun H, Wang X, Sun Q, Zhang X, Ma Z, Guo M, Sun B, Zhu X, Liu Q, Lou X (2020) Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics. J Eur Ceram Soc 40:2929. https://doi.org/10.1016/j.jeurceramsoc.2020.03.012

    CAS  Article  Google Scholar 

  20. Xu R, Xu Z, Feng Y, He H, Tian J, Huang D (2016) Temperature dependence of energy storage in Pb0.90La0.04Ba0.04[(Zr0.7Sn0.3)0.88Ti0.12]O3 antiferroelectric ceramics. J Am Ceram Soc 99:2984. https://doi.org/10.1111/jace.14297

    CAS  Article  Google Scholar 

  21. Wu S, Li W, Lin M, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang QM (2013) Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv Mater 25:1734. https://doi.org/10.1002/adma.201204072

    CAS  Article  Google Scholar 

  22. Wang H, Cao M, Huang R, Tao C, Pan W, Hao H, Yao Z, Liu H (2021) Preparation of BaTiO3@NiO core-shell nanoparticles with antiferroelectric-like characteristic and high energy storage capability. J Eur Ceram Soc 41:4129. https://doi.org/10.1016/j.jeurceramsoc.2021.02.042

    CAS  Article  Google Scholar 

  23. Luo B, Wang X, Tian E, Song H, Wang H, Li L (2017) Enhanced energy storage density and high efficiency of lead-free CaTiO3-BiScO3 linear dielectric ceramics. ACS Appl Mater Interfaces 9:19963. https://doi.org/10.1021/acsami.7b04175

    CAS  Article  Google Scholar 

  24. Xu Y, Guo Y, Liu Q, Wang G, Bai J, Tian J, Lin L, Tian Y (2020) High energy storage properties of lead-free Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 antiferroelectric ceramics. J Eur Ceram Soc 40:56. https://doi.org/10.1016/j.jeurceramsoc.2019.09.022

    CAS  Article  Google Scholar 

  25. Wang T, Jin L, Li C, Hu Q, Wei X (2015) Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 98: 559. https://doi.org/10.1111/jace.13325

  26. Yuan Q, Yao F, Wang Y, Ma R, Wang H (2017) Relaxor-relaxor-ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J Mater Chem C 5:9552. https://doi.org/10.1039/C7TC02478A

    CAS  Article  Google Scholar 

  27. Mondal T, Majee BP, Middya TR, Sarun PM (2016) Structural and dielectric relaxation behaviour of Ba0.8Sr0.2Zr0.1Ti0.9O3 ceramic. IOP Conference Series: Mater Sci Eng 149:012168. https://doi.org/10.1088/1757-899x/149/1/012168

    CAS  Article  Google Scholar 

  28. Wang X, Zhang Y, Song X, Yuan Z, Ma T, Zhang Q, Deng C, Liang T (2012) Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J Eur Ceram Soc 32:559. https://doi.org/10.1016/j.jeurceramsoc.2011.09.024

  29. Zhang Q, Wang L, Luo J, Tang Q, Du J (2010) Ba0.4Sr0.6TiO3/MgO composites with enhanced energy storage density and low dielectric loss for solid-state pulse-forming line. Int J Appl Ceram Technol 7:E124. https://doi.org/10.1111/j.1744-7402.2009.02456.x

    Article  Google Scholar 

  30. Dong G, Ma S, Du J, Cui J (2009) Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceram Int 35:2069. https://doi.org/10.1016/j.ceramint.2008.11.003

    CAS  Article  Google Scholar 

  31. Oh J-H, Lee YH, Ju BK, Shin DK, Park C-Y, Oh MH (1997) Impact of surface properties on the dielectric breakdown for polycrystalline and multilayered BaTiO3 thin films. J Appl Phys 82:6203. https://doi.org/10.1063/1.366505

    CAS  Article  Google Scholar 

  32. Song Z, Liu H, Zhang S, Wang Z, Shi Y, Hao H, Cao M, Yao Z, Yu Z (2014) Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J Eur Ceram Soc 34:1209. https://doi.org/10.1016/j.jeurceramsoc.2013.11.039

    CAS  Article  Google Scholar 

  33. Huang YH, Wu YJ, Qiu WJ, Li J, Chen XM (2015) Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J Eur Ceram Soc 35. https://doi.org/10.1016/j.jeurceramsoc.2014.11.022

  34. Touzin M, Gœuriot D, Fitting HJ, Guerret-Piecourt C, Juvé D, Tréheux D (2007) Relationships between dielectric breakdown resistance and charge transport in alumina materials—Effects of the microstructure. J Eur Ceram Soc 27:1193. https://doi.org/10.1016/j.jeurceramsoc.2006.05.047

    CAS  Article  Google Scholar 

  35. Rousselle M, Ansart F, Hérisson de Beauvoir T, Fradet G, Estournès C (2021) Phase evolution and sinterability of lanthanum phosphate – towards a below 600 °C spark plasma sintering. J Eur Ceram Soc 41: 7261. https://doi.org/10.1016/j.jeurceramsoc.2021.07.014

    CAS  Article  Google Scholar 

  36. Hsiang H-I, Hsi C-S, Huang C-C, Fu S-L (2008) Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC. J Alloy Compd 459:307. https://doi.org/10.1016/j.jallcom.2007.04.218

    CAS  Article  Google Scholar 

  37. Xu Q, Zhan D, Huang D-P, Liu H-X, Chen W, Zhang F (2013) Effect of MgO-CaO-Al2O3-SiO2 glass additive on dielectric properties of Ba0.95Sr0.05Zr0.2Ti0.8O3 ceramics. J Alloy Compd 558:77. https://doi.org/10.1016/j.jallcom.2012.12.164

    CAS  Article  Google Scholar 

  38. Young A, Hilmas G, Zhang S, Schwartz R (2007) Effect of liquid-phase sintering on the breakdown strength of barium titanate. J Am Ceram Soc 90:1504. https://doi.org/10.1111/j.1551-2916.2007.01637.x

    CAS  Article  Google Scholar 

  39. Zhang Q, Wang L, Luo J, Tang Q, Du J (2009) Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J Am Ceram Soc 92:1871. https://doi.org/10.1111/j.1551-2916.2009.03109.x

    CAS  Article  Google Scholar 

  40. Lee W-H, Su CY (2007) Improvement in the temperature stability of a BaTiO3-based multilayer ceramic capacitor by constrained sintering. J Am Ceram Soc 90: 3345. https://doi.org/10.1111/j.1551-2916.2007.01900.x

    CAS  Article  Google Scholar 

  41. Kim C-H, Park K-J, Yoon Y-J, Hong M-H, Hong J-O, Hur K-H (2008) Role of yttrium and magnesium in the formation of core-shell structure of BaTiO3 grains in MLCC. J Eur Ceram Soc 28:1213. https://doi.org/10.1016/j.jeurceramsoc.2007.09.042

    CAS  Article  Google Scholar 

  42. Liu Y, Cui B, Wang Y, Ma R, Shangguan M, Zhao X, Wang S, Li Q, Wang Y (2016) Core-shell structure and dielectric properties of Ba0.991Bi0.006TiO3@Nb2O5-Co3O4 ceramics. J Am Ceram Soc 99: 1664. https://doi.org/10.1111/jace.14154

  43. Liu B, Wang X, Zhao Q, Li L (2015) Improved energy storage properties of fine-crystalline BaTiO3 ceramics by coating powders with Al2O3 and SiO2. J Am Ceram Soc 98.https://doi.org/10.1111/jace.13614

  44. Ma R, Cui B, Wang Y, Wang S, Wang Y (2019) The energy storage properties of fine-grained Ba0.8Sr0.2Zr0.1Ti0.9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings. Mater Res Bull 111:311. https://doi.org/10.1016/j.materresbull.2018.11.033

    CAS  Article  Google Scholar 

  45. Wang J, Jiang S, Jiang D, Tian J, Li Y, Wang Y (2012) Microstructural design of BaTiO3-based ceramics for temperature-stable multilayer ceramic capacitors. Ceram Int 38:5853. https://doi.org/10.1016/j.ceramint.2012.04.036

    CAS  Article  Google Scholar 

  46. Shangguan M, Cui B, Ma R, Wang Y (2016) Production of Ba0.991Bi0.006TiO3@ZnO-B2O3-SiO2 ceramics with a high dielectric constant, a core–shell structure, and a fine-grained microstructure by means of a sol-precipitation method. Ceram Int 42. https://doi.org/10.1016/j.ceramint.2016.01.143

  47. Mornet S, Elissalde C, Hornebecq V, Bidault O, Duguet E, Brisson A, Maglione M (2005) Controlled growth of silica shell on Ba0.6Sr0.4TiO3 nanoparticles used as precursors of ferroelectric composites. Chem Mater 17:4530. https://doi.org/10.1021/cm050884r

    CAS  Article  Google Scholar 

  48. Moshtaghioun B, Peña J (2019) Non-Hall-Petch hardness dependence in ultrafine fibrous MgAl2O4-MgO eutectic ceramics fabricated by the laser-heated floating zone (LFZ) method. J Eur Ceram Soc 39:3208. https://doi.org/10.1016/j.jeurceramsoc.2019.04.015

    CAS  Article  Google Scholar 

  49. Shannon RD (1967) Synthesis of some new perovskites containing indium and thallium. Inorg Chem 6:1474. https://doi.org/10.1021/ic50054a009

    CAS  Article  Google Scholar 

  50. Tombácz E, Majzik A, Horvát Z, Illés E (2004) The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry 35:257. https://doi.org/10.1016/j.orggeochem.2003.11.002

  51. Fisher JG, Lee BK, Choi SY, Wang SM, Kang SJL (2006) Inhibition of abnormal grain growth in BaTiO3 by addition of Al2O3. J Eur Ceram Soc 26:1619. https://doi.org/10.1016/j.jeurceramsoc.2005.03.234

    CAS  Article  Google Scholar 

  52. Tura V, Mitoseriu L (1994) Polarization reversal in (Nb, Co)-doped BaTiO3 ceramics. Phys Lett A 189:327. https://doi.org/10.1016/0375-9601(94)90104-X

  53. Zhang J, Ji L, Jia X, Wang J, Zhai J, Zhou Y (2015) Crystal structure and effective dielectric response of Ba0.5Sr0.5TiO3-MgO composites synthesized in situ process. J Am Ceram Soc 98:97. https://doi.org/10.1111/jace.13242

  54. Cheng B, Su B, Holmes J, Button T, Gabbay M, Fantozzi G (2002) Dielectric and mechanical losses in (Ba,Sr)TiO3 systems. J Electroceram 9:17. https://doi.org/10.1023/A:1021633917071

    Article  Google Scholar 

  55. Fisher JG, Lee BK, Brancquart A, Choi SY, Kang SJ (2005) Effect of Al2O3 dopant on abnormal grain growth in BaTiO3. J Eur Ceram Soc 25:2033. https://doi.org/10.1016/j.jeurceramsoc.2005.03.065

  56. Wu L, Wang X, Li L (2016) Core-shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability. J Alloys Compd 688:113. https://doi.org/10.1016/j.jallcom.2016.07.057

  57. Cao SY, Zhu JT, Chen Q, Liu JT, Wu CY, Li LL, Xu J, Yan HX, Gao F (2022) Exploration about superior anti-counterfeiting ability of Sm3+ doped KSr2Nb5O15 photochromic ceramics: Origin and atomic-scale mechanism. J Materiomics 8:38–46. https://doi.org/10.1016/j.jmat.2021.06.001

    Article  Google Scholar 

  58. Zhang L, Zhong WL, Wang CL, Peng YP, Wang YG (1999) Size dependence of dielectric properties and structural metastability in ferroelectrics. Eur Phys J B 11:565. https://doi.org/10.1007/s100510051184

    CAS  Article  Google Scholar 

Download references

Funding

Support was provided by the Shaanxi Provincial Natural Science Basic Research Project (2021JQ-810), Horizontal Project of Shaanxi Province (2021-KJHX001), Horizontal Project of Shaanxi Province (2022-KJHX011), Shaanxi Provincial Department of Education Special Scientific Research Project (grant number 19JK0035), and Taif University Researchers Supporting Project number (TURSP-2020/14), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Ma or Bin Cui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Cui, B., Hu, D. et al. Enhanced energy storage of lead-free mixed oxide core double-shell barium strontium zirconate titanate@magnesium aluminate@zinc oxide-boron trioxide-silica ceramic nanocomposites. Adv Compos Hybrid Mater 5, 1477–1489 (2022). https://doi.org/10.1007/s42114-022-00509-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00509-z

Keywords

  • Core double-shell nanoparticles
  • Self-assembly
  • Fine-grained ceramics
  • Relaxor ferroelectric
  • Energy storage