Skip to main content

Advertisement

Log in

Synthesis, characterization and application of Carboxylmethyl cellulose, Guar gam, and Graphene oxide as novel composite adsorbents for removal of malachite green from aqueous solution

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The preparing biopolymer composite adsorbents for environmental friendliness applications remarkably attracted much attention. Herein, novel biopolymer nanocomposite of carboxymethyl cellulose (CMC), guar gum (GG), and graphene oxide (GO) was used to prepare the CMC/GG and CMC/GG/GO with different weight percents of GO (1, 3, and 5% denoted as CMC/GG/GO-1, CMC/GG/GO-3, and CMC/GG/GO-5, respectively) and their performance for removing cationic dye (MG: malachite green) from aqueous solution was studied. XRD, FTIR, SEM, EDX, and BET analyses were used to characterize the materials. Influential parameters such as adsorbent amount, initial dye concentration, contact time, temperature, and pH on the removal efficiency of contaminant from aqueous solutions were investigated. CMC/GG/GO-3 nanocomposite was selected as the optimal, and the max adsorption capacity 17.6 mg/g and removal efficiency 88.2% were obtained. Isotherm data (Langmuir, Freundlich, and Temkin) showed that the Langmuir isotherm corresponds to a correlation coefficient of 0.98. Thermodynamic data indicated that the adsorption was a spontaneous and endothermic process. Also, the study of pseudo-first-order and pseudo-second-order kinetic models signed a good agreement with the pseudo-second-order with R2 = 1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jadhav SA, Khedkar MV, Somvanshi SB, Jadhav KM (2021) Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications. Ceram Int 47(20):28623–28633. https://doi.org/10.1016/j.ceramint.2021.07

    Article  CAS  Google Scholar 

  2. Ma S, Ji Y, Dong Y, Chen S, Wang Y, Lü S (2021) An environmental-friendly pesticide-fertilizer combination fabricated by in-situ synthesis of ZIF-8. Sci Total Environ 789:147845. https://doi.org/10.1016/j.scitotenv.2021.14

    Article  CAS  Google Scholar 

  3. Kumar P, Bansal V, Kim K-H, Kwon EE (2018) Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J Ind Eng Chem 62:130–145. https://doi.org/10.1016/j.jiec.2017.12.051

    Article  CAS  Google Scholar 

  4. Zhang Y, Pan Y, Li P, Zeng X, Guo B, Pan J, Yin X (2021) Novel Schiff base-based cationic Gemini surfactants as corrosion inhibitors for Q235 carbon steel and printed circuit boards. Colloids Surf A 623:126717. https://doi.org/10.1016/j.colsurfa.2021.126

    Article  CAS  Google Scholar 

  5. Noreen S, Perveen S, Shafiq N, Aslam S, Iqbal HMN, Ashraf SS, Bilal M (2021) Laccase-loaded functionalized graphene oxide assemblies with improved biocatalytic properties and decolorization performance. Environ Technol Innov 24:101884. https://doi.org/10.1016/j.eti.2021.101884

    Article  CAS  Google Scholar 

  6. dos Reis LGT, Robaina NF, Pacheco WF, Cassella RJ (2011) Separation of malachite green and methyl green cationic dyes from aqueous medium by adsorption on Amberlite XAD-2 and XAD-4 resins using sodium dodecylsulfate as carrier. Chem Eng J 171:532–540. https://doi.org/10.1016/j.cej.2011.04.024

    Article  CAS  Google Scholar 

  7. Didehban A, Zabihi M, Faghihi M, Akbarbandari F, Akhtarivand H (2021) Design and fabrication of core-shell magnetic and non-magnetic supported carbonaceous metal organic framework nanocomposites for adsorption of dye. J Phys Chem Solids 152:109930. https://doi.org/10.1016/j.jpcs.2020.109930

    Article  CAS  Google Scholar 

  8. Gupta K, Khatri OP (2017) Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J Colloid Interface Sci 501:11–21. https://doi.org/10.1016/j.jcis.2017.04.035

    Article  CAS  Google Scholar 

  9. Buvaneswari N, Kannan C (2011) Plant toxic and non-toxic nature of organic dyes through adsorption mechanism on cellulose surface. J Hazard Mater 189:294–300. https://doi.org/10.1016/j.jhazmat.2011.02.036

    Article  CAS  Google Scholar 

  10. Pinar Gumus Z, Soylak M (2021) Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. TrAC, Trends Anal Chem 143:116417. https://doi.org/10.1016/j.trac.2021.116417

    Article  CAS  Google Scholar 

  11. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  12. Eltaweil AS, Elgarhy GS, El-Subruiti GM, Omer AM (2020) Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int J Biol Macromol 154:307–318. https://doi.org/10.1016/j.ijbiomac.2020.03.122

    Article  CAS  Google Scholar 

  13. Xu G-R, An Z-H, Xu K, Liu Q, Das R, Zhao H-L (2021) Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: the cutting-edge study on designs, synthesis, and applications. Coord Chem Rev 427:213554. https://doi.org/10.1016/j.ccr.2020.213554

    Article  CAS  Google Scholar 

  14. Lin Z, Pang S, Zhou Z, Wu X, Bhatt P, Chen S (2021) Current insights into the microbial degradation for butachlor: strains, metabolic pathways, and molecular mechanisms. Appl Microbiol Biotechnol 105(11):4369–4381. https://doi.org/10.1007/s00253-021-11346-3

    Article  CAS  Google Scholar 

  15. Nouri L, Hemidouche S, Boudjemaa A, Kaouah F, Sadaoui Z, Bachari K (2020) Elaboration and characterization of photobiocomposite beads, based on titanium (IV) oxide and sodium alginate biopolymer, for basic blue 41 adsorption/photocatalytic degradation. Int J Biol Macromol 151:66–84. https://doi.org/10.1016/j.ijbiomac.2020.02

    Article  CAS  Google Scholar 

  16. Vatanpour V, Faghani S, Keyikoglu R, Khataee A (2020) Enhancing the permeability and antifouling properties of cellulose acetate ultrafiltration membrane by incorporation of ZnO@graphitic carbon nitride nanocomposite. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.1174

    Article  Google Scholar 

  17. Yu Z, Hu C, Dichiara AB, Jiang W, Gu J (2020) Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 10:1–20. https://doi.org/10.3390/nano10010169

    Article  CAS  Google Scholar 

  18. Zhang L, Zhang H, Guo W, Tian Y (2014) Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud. Appl Clay Sci 93–94:85–93. https://doi.org/10.1016/j.clay.2014.03.004

    Article  CAS  Google Scholar 

  19. Karimzadeh Z, Javanbakht S, Namazi H (2019) Carboxymethylcellulose/MOF-5/graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. BioImpacts 9:5–13. https://doi.org/10.15171/bi.2019.02

  20. Juengchareonpoon K, Wanichpongpan P, Boonamnuayvitaya V (2021) Graphene oxide and carboxymethylcellulose film modified by citric acid for antibiotic removal. J Chem Eng Environ. https://doi.org/10.1016/j.jece.2020.104637

    Article  Google Scholar 

  21. Kaur K, Jindal R (2019) Meenu, Self-assembled GO incorporated CMC and chitosan-based nanocomposites in the removal of cationic dyes. Carbohydr Polym 225:115245. https://doi.org/10.1016/j.carbpol.2019.115245

    Article  CAS  Google Scholar 

  22. Varaprasad K, Jayaramudu T, Sadiku ER (2017) Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydr Polym 164:186–194. https://doi.org/10.1016/j.carbpol.2017.01.094

    Article  CAS  Google Scholar 

  23. Pashaei-Fakhri S, Peighambardoust SJ, Foroutan R, Arsalani N, Ramavandi B (2021) Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 270:129419. https://doi.org/10.1016/j.chemosphere.2020

    Article  CAS  Google Scholar 

  24. Sharma G, Sharma S, Kumar A, Al-Muhtaseb AH, Naushad M, Ghfar AA, Mola GT, Stadler FJ (2018) Guar gum and its composites as potential materials for diverse applications: a review. Carbohydr Polym 199:534–545. https://doi.org/10.1016/j.carbpol.2018.07.053

    Article  CAS  Google Scholar 

  25. Thombare N, Jha U, Mishra S, Siddiqui MZ (2016) Guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol 88:361–372. https://doi.org/10.1016/j.ijbiomac.2016.04.001

    Article  CAS  Google Scholar 

  26. Jain V, Tammishetti V, Joshi K, Kumar D, Pradip, Rai B (2017) Guar gum as a selective flocculant for the beneficiation of alumina rich iron ore slimes: density functional theory and experimental studies. Miner Eng 109:144–152. https://doi.org/10.1016/j.mineng.2017.03.007

  27. Ahmad R, Haseeb S (2015) Absorptive removal of Pb2+, Cu2+ and Ni2+ from the aqueous solution by using groundnut husk modified with guar gum (GG): kinetic and thermodynamic studies, Groundw. Sustain Dev 1:41–49. https://doi.org/10.1016/j.gsd.2015.11.001

    Article  Google Scholar 

  28. Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications - a review. J Food Sci Technol 51:409–418. https://doi.org/10.1007/s13197-011-0522-x

    Article  CAS  Google Scholar 

  29. Pathania D, Katwal R, Sharma G, Naushad M, Khan MR, Al-Muhtaseb AH (2016) Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol 87:366–374. https://doi.org/10.1016/j.ijbiomac.2016.02.073

    Article  CAS  Google Scholar 

  30. Hattori K, Abe E, Yoshida T, Cuculo JA (2004) New solvents for cellulose. II. Ethylenediamine/thiocyanate salt system. Polym J 36:123–130. https://doi.org/10.1295/polymj.36.123

    Article  CAS  Google Scholar 

  31. Rachtanapun P (2009) Blended films of carboxymethyl cellulose from papaya peel (CMCp) and corn starch, Kasetsart J. -. Nat Sci 43:259–266

    CAS  Google Scholar 

  32. Lakshmi DS, Trivedi N, Reddy CRK (2017) Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydr Polym 157:1604–1610. https://doi.org/10.1016/j.carbpol.2016.11.042

    Article  CAS  Google Scholar 

  33. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  34. Tijsen CJ, Kolk HJ, Stamhuis EJ, Beenackers AACM (2001) An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohydr Polym 45:219–226. https://doi.org/10.1016/S0144-8617(00)00243-5

    Article  CAS  Google Scholar 

  35. Kong Q, Wang X, Lou T (2020) Preparation of millimeter-sized chitosan/carboxymethyl cellulose hollow capsule and its dye adsorption properties. Carbohydr Polym 244:116481. https://doi.org/10.1016/j.carbpol.2020.116481

    Article  CAS  Google Scholar 

  36. Bono A, Ying PH, Yan FY, Muei CL, Sarbatly R, Krishnaiah D (2009) Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Adv Nat Appl Sci 3:5–11

    CAS  Google Scholar 

  37. Keilany Z (1978) Book Reviews. Rev Soc Econ 36:228–229. https://doi.org/10.1080/00346767800000037

    Article  Google Scholar 

  38. Sharma R, Kalia S, Kaith BS, Srivastava MK (2016) Synthesis of guar gum-acrylic acid graft copolymers based biodegradable adsorbents for cationic dye removal. Int J Plast Technol 20:294–314. https://doi.org/10.1007/s12588-016-9156-1

    Article  CAS  Google Scholar 

  39. Sharma G, Kumar A, Sharma S, Naushad M, Ghfar AA, Al-Muhtaseb AH, Ahamad T, Sharma N, Stadler FJ (2020) Carboxymethyl cellulose structured nano-adsorbent for removal of methyl violet from aqueous solution: isotherm and kinetic analyses. Cellulose 27:3677–3691. https://doi.org/10.1007/s10570-020-02989-y

    Article  CAS  Google Scholar 

  40. Sabarish R, Unnikrishnan G (2018) Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym 199:129–140. https://doi.org/10.1016/j.carbpol.2018.06.123

    Article  CAS  Google Scholar 

  41. Lv Y, Xing B, Zheng M, Yi G, Huang G, Zhang C, Yuan R, Chen Z, Cao Y (2018) Hydrothermal synthesis of ultra-light coal-based graphene oxide aerogel for efficient removal of dyes from aqueous solutions. Nanomaterials 8:1–17. https://doi.org/10.3390/nano8090670

    Article  CAS  Google Scholar 

  42. Hoseinzadeh H, Hayati B, Shahmoradi F, Seifpanahi-shabani K, Mohammad N (2021) Development of room temperature synthesized and functionalized metal-organic framework/graphene oxide composite and pollutant adsorption ability. Mater Res Bull 142:111408. https://doi.org/10.1016/j.materresbull.2021.111408

    Article  CAS  Google Scholar 

  43. Huang D, Xin Q, Ni Y, Shuai Y, Wang S, Li Y, Ye H, Lin L, Ding X, Zhang Y (2018) Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation. RSC Adv 8:6099–6109. https://doi.org/10.1039/c7ra09794h

    Article  CAS  Google Scholar 

  44. Rafi M, Samiey B, Cheng CH (2018) Study of adsorption mechanism of congo red on graphene oxide/PAMAM nanocomposite. Materials (Basel) 11:1–24. https://doi.org/10.3390/ma11040496

    Article  CAS  Google Scholar 

  45. Kumar B, Priyadarshi R, Sauraj, Deeba F, Kulshreshtha A, Gaikwad KK, Kim J, Kumar A, Negi YS (2020) Nanoporous sodium carboxymethyl cellulose-g-poly (Sodium acrylate)/fecl3 hydrogel beads: synthesis and characterization. Gels 6:1–11. https://doi.org/10.3390/gels6040049

  46. Kong W, Liu J (2019) Nitrogen-decorated, porous carbons derived from waste cow manure as efficient catalysts for the selective capture and conversion of CO 2. RSC Adv 9:4925–4931. https://doi.org/10.1039/c8ra10497b

    Article  CAS  Google Scholar 

  47. Vall M, Hultberg J, Strømme M, Cheung O (2019) Inorganic carbonate composites as potential high temperature CO2 sorbents with enhanced cycle stability. RSC Adv 9:20273–20280. https://doi.org/10.1039/c9ra02843a

    Article  CAS  Google Scholar 

  48. Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent approaches in guar gum hydrogel synthesis for water purification. Int J Polym Anal Charact 23:621–632. https://doi.org/10.1080/1023666X.2018.1488661

    Article  CAS  Google Scholar 

  49. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  50. Xiong G, Wang BB, You LX, Ren BY, He YK, Ding F, Dragutan I, Dragutan V, Sun YG (2019) Hypervalent silicon-based, anionic porous organic polymers with solid microsphere or hollow nanotube morphologies and exceptional capacity for selective adsorption of cationic dyes. J. Mater. Chem. A. 7:393–404. https://doi.org/10.1039/c8ta07109h

    Article  CAS  Google Scholar 

  51. Gan Q, Shi W, Xing Y, Hou Y (2018) A polyoxoniobate/g-C3N4 nanoporous material with high adsorption capacity of methylene blue from aqueous solution. Front Chem 6:1–10. https://doi.org/10.3389/fchem.2018.00007

    Article  CAS  Google Scholar 

  52. Shen J, Shahid S, Amura I, Sarihan A, Tian M, Emanuelsson EA (2018) Enhanced adsorption of cationic and anionic dyes from aqueous solutions by polyacid doped polyaniline. Synth Met 245:151–159. https://doi.org/10.1016/j.synthmet.2018.08.015

    Article  CAS  Google Scholar 

  53. Mahini R, Esmaeili H, Foroutan R (2018) Adsorption of methyl violet from aqueous solution using brown algae Padina sanctae-crucis. Turkish J Biochem 43(6):623–631

    Article  CAS  Google Scholar 

  54. Meteku BE, Huang J, Zeng J, Subhan F, Feng F, Zhang Y, Yan Z (2020) Magnetic metal–organic framework composites for environmental monitoring and remediation. Coord Chem Rev 413:213261. https://doi.org/10.1016/j.ccr.2020.213261

    Article  CAS  Google Scholar 

  55. Cao X, Wang X, Chen M, Xiao F, Huang Y, Lyu X (2020) Synthesis of nanoscale zeolitic imidazolate framework-8 (ZIF-8) using reverse micro-emulsion for Congo red adsorption. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.11806

    Article  Google Scholar 

  56. Arifin NFT, Yusof N, Nordin NAHM, Bilad MR, Jaafar J, Ismail AF, Salleh WNW (2021) Comparison of different activated agents on biomass-derived graphene towards the hybrid nanocomposites with zeolitic imidazolate framework-8 for room temperature hydrogen storage. J Environ Chem Eng 9(2):105118. https://doi.org/10.1016/j.jece.2021.105118

    Article  CAS  Google Scholar 

  57. Chowdhury A, Kumari S, Khan AA, Chandra MR, Hussain S (2021) Activated carbon loaded with Ni-Co-S nanoparticle for superior adsorption capacity of antibiotics and dye from wastewater: kinetics and isotherms. Colloids Surf, A 611:125868. https://doi.org/10.1016/j.colsurfa.2020.125

    Article  CAS  Google Scholar 

  58. Nqombolo A, Munonde TS, Makhetha TA, Moutloali RM, Nomngongo PN (2021) Cobalt/zinc based metal organic frameworks as an effective adsorbent for improved removal of As(V) and Cr(VI) in a wide pH range. J Market Res 12:1845–1855. https://doi.org/10.1016/j.jmrt.2021.03.113

    Article  CAS  Google Scholar 

  59. Palanisamy PN, Sivakumar P (2009) Kinetic and isotherm studies of the adsorption of Acid Blue 92 using a low-cost non-conventional activated carbon. Desalination 249:388–397. https://doi.org/10.1016/j.desal.2009.09.006

    Article  CAS  Google Scholar 

  60. Banerjee D (1993) Experimental techniques in thermal analysis thermogravimetry (TG) & differential scanning calorimetry (DSC). Anal Proc 12:469–508

    Google Scholar 

  61. Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag 182:620–640. https://doi.org/10.1016/j.jenvman.2016.07.049

    Article  CAS  Google Scholar 

  62. Cai X, Xie Z, Li D, Kassymova M, Zang SQ, Jiang HL (2020) Nano-sized metal-organic frameworks: synthesis and applications. Coord Chem Rev 417:213366. https://doi.org/10.1016/j.ccr.2020.213366

    Article  CAS  Google Scholar 

  63. Rey-Mafull CA, Tacoronte JE, Garcia R, Tobella J, Llópiz JC, Iglesias A, Hotza D (2014) Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid. Springerplus 3:1–12. https://doi.org/10.1186/2193-1801-3-48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Moradi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An eco-friendly adsorbent was synthesized using CMC, GG, and GO.

• Dye (MG) adsorption onto CMC/GG/GO-3 fitted well with pseudo-second-order kinetics and the Langmuir isotherm.

• CMC/GG/GO-3 is the excellent potential candidate for removal of dye (MG) from aqueous solutions.

• Thermodynamic data indicated that the adsorption was a spontaneous and endothermic process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeini, A.H., Kalaee, M.R., Moradi, O. et al. Synthesis, characterization and application of Carboxylmethyl cellulose, Guar gam, and Graphene oxide as novel composite adsorbents for removal of malachite green from aqueous solution. Adv Compos Hybrid Mater 5, 335–349 (2022). https://doi.org/10.1007/s42114-021-00388-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00388-w

Keywords

Navigation