Skip to main content

Advertisement

Log in

Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Herein, flexible and porous Co3O4-carbon nanofibers (Co3O4-CNFs) were fabricated by electrospinning technique combining with the followed carbonization process. The effects of material composition and calcination temperature on morphology, pore structure, and electrochemical properties of the Co3O4-CNFs were systematically investigated. Results indicated that the obtained Co3O4-CNFs exhibited high porosity, high mechanical strength, and superior electrical conductivity. Electrochemical characterization results showed that the optimized Co3O4-CNFs as binder-free electrodes exhibited a specific capacitance of 369 F g−1 at the current density of 0.1 A g−1. Even at a high current density of 2 A g−1, the specific capacitance still remained at 181 F g−1, with the capacitance retention rate of 49%. Intriguingly, the prepared Co3O4-CNF film could recover to its original state easily after folding for three times, indicating good mechanical flexibility for free-standing electrodes. Coupled with the excellent mechanical flexibility, high specific capacitance, and simple fabrication process, the flexible and free-standing Co3O4-CNFs with hierarchical porous structure could be promising electrode materials for energy storage applications.

Flexible and porous Co3O4-carbon nanofibers were prepared by electrospinning and carbonization,which can be used as free-standing electrodes for supercapacitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/C1CS15060J

    Article  CAS  Google Scholar 

  2. Ma C, Ma MG, Si C, Ji XX, Wan P (2021) Flexible Mxene-based composites for wearable devices. Adv Funct Mater 31:2009524. https://doi.org/10.1002/adfm.202009524

    Article  CAS  Google Scholar 

  3. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33:202101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  4. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X, Si C (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

    Article  CAS  Google Scholar 

  5. Zhu Q, Huang Y, Li Y, Zhou M, Xu S, Liu X, Liu C, Yuan B, Guo Z (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00265-6

    Article  Google Scholar 

  6. Zygmuntowicz J, Łoś J, Kurowski B, Piotrkiewicz P, Kaszuwara W (2021) Investigation of microstructure and selected properties of Al2O3-Cu and Al2O3-Cu-Mo composites. Adv Compos Hybrid Mater 4:212–222. https://doi.org/10.1007/s42114-020-00188-8

    Article  CAS  Google Scholar 

  7. Wei H, Li A, Kong D, Li Z, Cui D, Li T, Dong B, Guo Z (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4:86–95. https://doi.org/10.1007/s42114-020-00201-0

    Article  CAS  Google Scholar 

  8. Li Z, Ma G, Ge R, Qin F, Dong X, Meng W, Liu T, Tong J, Jiang F, Zhou Y, Li K, Min X, Huo K, Zhou Y (2016) Free-standing conducting polymer films for high-performance energy devices. Angew Chem Int Ed Engl 55:979–982. https://doi.org/10.1002/anie.201509033

    Article  CAS  Google Scholar 

  9. Huang J, Xu Y, Xiao Y, Zhu H, Wei J, Chen Y (2017) Mussel-inspired, biomimetics-assisted self-assembly of Co3O4 on carbon fibers for flexible supercapacitors. ChemElectroChem 4:2269–2277. https://doi.org/10.1002/celc.201700369

    Article  CAS  Google Scholar 

  10. Zhang Y, Li Xi, Zhu T, Ma S, Li H, Sun G (2018) Facile fabrication hierarchical pore structure Li1.2Mn0.54Ni0.13Co0.13-xSrxO2 nanofiber for high-performance cathode materials in Li-ion battery. ES Mater Manuf 3:38–46. https://doi.org/10.30919/esmm5f201

  11. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance Lithium-ion batteries. Eng Sci 11:19–30. https://doi.org/10.30919/es8d1128

  12. Patil S, Bhat T, Teli A, Beknalkar S, Dhavale S, Faras M, Karanjkar M, Patil P (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: An overview. Eng Sci 12:38–51. https://doi.org/10.30919/es8d1140

  13. Tian Y, Yang X, Nautiyal A, Zheng Y, Guo Q, Luo J, Zhang X (2019) One-step microwave synthesis of MoS2/MoO3@graphite nanocomposite as an excellent electrode material for supercapacitors. Adv Compos Hybrid Mater 2:151–161. https://doi.org/10.1007/s42114-019-0075-4

    Article  CAS  Google Scholar 

  14. Hou C, Fan G, Xie X, Zhang X, Sun X, Zhang Y, Wang B, Du W, Fan R (2021) TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies. J Alloy Compd 855:157499. https://doi.org/10.1016/j.jallcom.2020.157499

    Article  CAS  Google Scholar 

  15. Cai J, Xu W, Liu Y, Zhu Z, Liu G, Ding W, Wang G, Wang H, Luo Y (2019) Robust construction of flexible bacterial cellulose@Ni(OH)2 paper: toward high capacitance and sensitive H2O2 detection. Eng Sci 5:21–29. https://doi.org/10.30919/es8d669

  16. Dong H, Li Y, Chai H, Cao Y, Chen X (2019) Hydrothermal synthesis of CuCo2S4 nano-structure and N-doped graphene for high-performance aqueous asymmetric supercapacitors. ES Energy Environ 4:19–26. https://doi.org/10.30919/esee8c221

  17. Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H, Zhang X, Si C (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem. https://doi.org/10.1039/D1GC02841C

  18. Pal M, Rakshit R, Singh AK, Mandal K (2016) Ultra high supercapacitance of ultra small Co3O4 nanocubes. Energy 103:481–486. https://doi.org/10.1016/j.energy.2016.02.139

    Article  CAS  Google Scholar 

  19. Jiang Y, Chen L, Zhang H, Zhang Q, Chen W, Zhu J, Song D (2016) Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem Eng J 292:1–12. https://doi.org/10.1016/j.cej.2016.02.009

    Article  CAS  Google Scholar 

  20. Li G, Ji Y, Zuo D, Xu J, Zhang H (2019) Carbon electrodes with double conductive networks for high-performance electrical double-layer capacitors. Adv Compos Hybrid Mater 2:456–461. https://doi.org/10.1007/s42114-019-00109-4

    Article  CAS  Google Scholar 

  21. Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang TS, Zhang X, Si C (2021) Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl Mater Interface 13(27):32115–32125. https://doi.org/10.1021/acsami.1c06647

    Article  CAS  Google Scholar 

  22. Lu JS, Han X, Dai L, Li CY, Wang JF, Zhong YD, Yu FX, Si CL (2020) Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness. Carbohyd Polym 250:117010. https://doi.org/10.1016/j.carbpol.2020.117010

    Article  CAS  Google Scholar 

  23. Du HS, Parit M, LiuK ZMM, Jiang ZH, Huang TS, Zhang XY, Si CL (2021) Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohyd Polym 270:118372. https://doi.org/10.1016/j.carbpol.2021.118372

    Article  CAS  Google Scholar 

  24. Lu Y, Yu G, Wei X, Zhan C, Jeon J, Wang X, Jeffryes C, Guo Z, Wei S, Wujcik E (2019) Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv Compos Hybrid Mater 2:711–719. https://doi.org/10.1007/s42114-019-00122-7

    Article  CAS  Google Scholar 

  25. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil R, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  26. Pang H, Li X, Zhao Q, Xue H, Lai W, Hu Z, Huang W (2017) One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy 35:138–145. https://doi.org/10.1016/j.nanoen.2017.02.044

    Article  CAS  Google Scholar 

  27. Wang J, Zhang X, Wei Q, Lv H, Tian Y, Tong Z, Liu X, Hao J, Qu H, Zhao J, Li Y, Mai L (2016) 3D self-supported nanopine forest-like Co3O4@CoMoO4 core-shell architectures for high-energy solid state supercapacitors. Nano Energy 19:222–233. https://doi.org/10.1016/j.nanoen.2015.10.036

    Article  CAS  Google Scholar 

  28. Liu W, Du HS, Zheng T, Si CL (2021) Recent insights on biomedical applications of bacterial cellulose based composite hydrogels. Curr Med Chem 33845720. https://doi.org/10.2174/0929867328666210412124444

  29. Zhao Y, Liu C, Yi R, Li Z, Chen Y, Li Y, Mitrovic I, Taylor S, Chalker P, Yang L, Zhao C (2020) Facile preparation of Co3O4 nanoparticles incorporating with highly conductive MXene nanosheets as high-performance anodes for Lithium-ion batteries. Electrochim Acta 345:136203. https://doi.org/10.1016/j.electacta.2020.136203

    Article  CAS  Google Scholar 

  30. Hu LQ, Du HS, Liu C, Zhang YD, Yu G, Zhang XY, Si CL, Li B, Peng H (2019) Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process. ACS Sustain Chem Eng 7:1327–1336. https://doi.org/10.1021/acssuschemeng.8b05017

    Article  CAS  Google Scholar 

  31. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4. https://doi.org/10.1007/s42114-021-00312-2

  32. Ma C, Yuan Q, Du H, Ma M, Si C, Wan P (2020) Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Appl Mater Inter 12:34226–34234. https://doi.org/10.1021/acsami.0c10750

    Article  CAS  Google Scholar 

  33. Xu R, Liu K, Du H, Liu H, Cao X, Zhao X, Qu G, Li X, Li B, Si CL (2020) Falling leaves return to their roots: a review on the preparation of γ-valerolactone from lignocellulose and its application in the conversion of lignocellulose. ChemSusChem 13:6461–6476. https://doi.org/10.1002/cssc.202002008

  34. Dong H, Li M, Jin Y, Wu Y, Huang C, Yang J (2020) Preparation of graphene-like porous carbons with enhanced thermal conductivities from lignin nano-particles by combining hydrothermal carbonization and pyrolysis. Front Energy Res 8:148. https://doi.org/10.3389/fenrg.2020.00148

    Article  Google Scholar 

  35. Zheng Y, Li Z, Xu J, Wang T, Liu X, Duan X, Ma Y, Zhou Y, Pei C (2016) Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy 20:94–107. https://doi.org/10.1016/j.nanoen.2015.11.038

    Article  CAS  Google Scholar 

  36. Fan H, Quan L, Yuan M, Zhu S, Wang K, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao C (2016) Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. Electrochim Acta 188:222–229. https://doi.org/10.1016/j.electacta.2015.12.011

    Article  CAS  Google Scholar 

  37. Su F, Lyu X, Liu C, Miao M (2016) Flexible two-ply yarn supercapacitors based on carbon nanotube/stainless steel core spun yarns decorated with Co3O4 nanoparticles and MnOx composites. Electrochim Acta 215:535–542. https://doi.org/10.1016/j.electacta.2016.08.140

    Article  CAS  Google Scholar 

  38. Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Zhang X, Si C (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: A review. ACS Sustain Chem Eng 8:7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

    Article  CAS  Google Scholar 

  39. Liu Q, Zhong L, Zhao Q, Frear C, Zheng Y (2015) Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl Mater Inter 7:14573–14583. https://doi.org/10.1021/acsami.5b04598

    Article  CAS  Google Scholar 

  40. Yang JE, Jang I, Kim M, Baeck SH, Hwang S, Shim SE (2013) Electrochemically polymerized vine-like nanostructured polyaniline on activated carbon nanofibers for supercapacitor. Electrochim Acta 111:136–143. https://doi.org/10.1016/j.electacta.2013.07.183

    Article  CAS  Google Scholar 

  41. Lu J, Zhu W, Dai L, Si C, Ni Y (2019) Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohyd Polym 215:289–295. https://doi.org/10.1016/j.carbpol.2019.03.100

  42. Du HS, Liu C, Zhang YD, Yu G, Si CL, Li B (2016) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind Crop Prod 94:736–745. https://doi.org/10.1016/j.indcrop.2016.09.059

    Article  CAS  Google Scholar 

  43. An L, Si C, Wang G, Sui W, Tao Z (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crop Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009

    Article  CAS  Google Scholar 

  44. Xu R, Du H, Liu C, Liu H, Wu M, Zhang X, Si C, Li B (2021) An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J Clean Prod 313:127834. https://doi.org/10.1016/j.jclepro.2021.127834

    Article  CAS  Google Scholar 

  45. Zhang H, Zhong J, Liu Z, Mai J, Liu H, Mai X (2021) Dyed bamboo composite materials with excellent anti-microbial corrosion. Adv Compos Hybrid Mater 4:294–305. https://doi.org/10.1007/s42114-020-00196-8

    Article  CAS  Google Scholar 

  46. Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crop Prod 130:184–197. https://doi.org/10.1016/j.indcrop.2018.12.082

    Article  CAS  Google Scholar 

  47. Chen SL, Wang GH, Sui WJ, Parvezc AM, Dai L, Si CL (2020) Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Ind Crop Prod 145:112164. https://doi.org/10.1016/j.indcrop.2020.112164

    Article  CAS  Google Scholar 

  48. Lin W, Yang J, Zheng Y, Huang C, Yong Q (2021) Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility. Biotechnol Biofuels 14(1):1–15. https://doi.org/10.1186/s13068-021-01994-y

    Article  CAS  Google Scholar 

  49. Pei W, Chen ZS, Chan HYE, Zheng L, Liang C, Huang C (2020) Isolation and identification of a novel anti-protein aggregation activity of lignin-carbohydrate complex from chionanthus retusus leaves. Front Bioeng Biotechnol 8:573991. https://doi.org/10.3389/fbioe.2020.573991

    Article  Google Scholar 

  50. Dong H, Zheng L, Yu P, Jiang Q, Wu Y, Huang C, Yin B (2020) Characterization and application of lignin-carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustain Chem Eng 8(1):256–266. https://doi.org/10.1021/acssuschemeng.9b05290

    Article  CAS  Google Scholar 

  51. Huang C, Tang S, Zhang W, Tao Y, Lai C, Li X, Yong Q (2018) Unveiling the structural properties of lignin-carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustain Chem Eng 6(9):12522–12531. https://doi.org/10.1021/acssuschemeng.8b03262

    Article  CAS  Google Scholar 

  52. Huang C, Zheng Y, Lin W, Shi Y, Huang G, Yong Q (2020) Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene resin. Biotechnol Biofuels 13:188. https://doi.org/10.1186/s13068-020-01828-3

    Article  CAS  Google Scholar 

  53. Pei W, Shang W, Liang C, Jiang X, Huang C, Yong Q (2020) Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. Ind Crop Prod 154:112638. https://doi.org/10.1016/j.indcrop.2020.112638

    Article  CAS  Google Scholar 

  54. Li Q, Xie S, Serem W, Naik M, Liu L, Yuan J (2017) Quality carbon fibers from fractionated lignin. Green Chem 19:1628–1634. https://doi.org/10.1039/C6GC03555H

    Article  CAS  Google Scholar 

  55. Xu JY, Li CY, Dai L, Xu C, Zhong YD, Yu FX, Si CL (2020) Biomass fractionation and lignin fractionation towards lignin valorization. ChemSusChem 13(17):4284–4295. https://doi.org/10.1002/cssc.202001491

  56. Wang X, Tang S, Chai S, Wang P, Qin J, Pei W, Bian H, Jiang Q, Huang C (2021) Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydr Polym 270:118342. https://doi.org/10.1016/j.carbpol.2021.118342

    Article  CAS  Google Scholar 

  57. Wang P, Yin B, Dong H, Zhang Y, Zhang Y, Chen R, Yang Z, Huang C, Jiang Q (2020) Coupling Biocompatible Au Nanoclusters and Cellulose Nanofibrils to Prepare the Antibacterial Nanocomposite Films. Front Bioeng Biotechnol 8:986. https://doi.org/10.3389/fbioe.2020.00986

    Article  Google Scholar 

  58. Huang C, Dong H, Zhang Z, Bian H, Yong Q (2020) Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions. Cellulose 27(16):9355–9370. https://doi.org/10.1007/s10570-020-03427-9

    Article  CAS  Google Scholar 

  59. Liu W, Du H, Liu H, Xie H, Xu T, Zhao X, Liu Y, Zhang X, Si C (2020) Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain Chem Eng 8:16691–16700. https://doi.org/10.1021/acssuschemeng.0c06561

    Article  CAS  Google Scholar 

  60. Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y, Liu W, Lan H, Zhang X, Si C (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7:7200–7208. https://doi.org/10.1021/acssuschemeng.9b00209

    Article  CAS  Google Scholar 

  61. Liu HC, Chien A, Newcomb BA, Liu Y, Kumar S (2015) Processing, structure, and properties of lignin- and cnt-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain Chem Eng 3:1943–1954. https://doi.org/10.1021/acssuschemeng.5b00562

    Article  CAS  Google Scholar 

  62. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Inter 7:23515–23520. https://doi.org/10.1021/acsami.5b06107

    Article  CAS  Google Scholar 

  63. Samuel E, Joshi B, Jo H, Kim Y, Swihart M, Yun J, Kim K, Yoon S (2017) Flexible and freestanding core-shell SnO/carbon nanofiber mats for high-performance supercapacitors. J Alloy Compd 728:1362–1371. https://doi.org/10.1016/j.jallcom.2017.09.103

    Article  CAS  Google Scholar 

  64. Liao R, Wang H, Zhang W, Shi J, Huang M, Shi Z, Wei W, Li X, Liu S (2021) High-rate sodium storage performance enabled using hollow Co3O4 nanoparticles anchored in porous carbon nanofibers anode. J Alloy Compd 868:159262. https://doi.org/10.1016/j.jallcom.2021.159262

    Article  CAS  Google Scholar 

  65. Lu X, Zhu D, Li X, Li M, Chen Q, Qing Y (2021) Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00258-5

    Article  Google Scholar 

  66. Wang Z, Li X, Wang L, Li Y, Qin J, Xie P, Qu Y, Sun K, Fan R (2020) Flexible multi-walled carbon nanotubes/polydimethylsiloxane membranous composites toward high-permittivity performance. Adv Compos Hybrid Mater 3:1–7. https://doi.org/10.1007/s42114-020-00144-6

    Article  CAS  Google Scholar 

  67. Yang W, Hou L, Xu X, Li Z, Ma X, Yang F, Li Y (2018) Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon 130:325–332. https://doi.org/10.1016/j.carbon.2018.01.032

    Article  CAS  Google Scholar 

  68. Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q (2020) Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour Technol 306:123163. https://doi.org/10.1016/j.biortech.2020.123163

    Article  CAS  Google Scholar 

  69. Dou Y, Xu J, Ruan B, Liu Q, Pan Y, Sun Z, Dou SX (2016) Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater 6:1501835. https://doi.org/10.1002/aenm.201501835

    Article  CAS  Google Scholar 

  70. Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29:1604167. https://doi.org/10.1002/adma.201604167

    Article  CAS  Google Scholar 

  71. Huang C, Dong H, Su Y, Wu Y, Narron R, Yong Q (2019) Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials 9(3):387. https://doi.org/10.3390/nano9030387

    Article  CAS  Google Scholar 

  72. Huang C, Lin W, Lai C, Li X, Jin Y, Yong Q (2019) Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresour Technol 285:121355. https://doi.org/10.1016/j.biortech.2019.121355

    Article  CAS  Google Scholar 

  73. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Lignin-based electrodes for energy storage application. Ind Crop Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425

    Article  CAS  Google Scholar 

  74. Wang Y, Hu Y, Hao X, Peng P, Shi J, Peng F, Sun RC (2020) Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review. Adv Compos Hybrid Mater 3:267–284. https://doi.org/10.1007/s42114-020-00158-0

    Article  CAS  Google Scholar 

  75. Liu L, Jiang Z, Fang L, Xu H, Zhang H, Gu X, Wang Y (2017) Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl Mater Inter 9:27736–27744. https://doi.org/10.1021/acsami.7b07793

    Article  CAS  Google Scholar 

  76. Ma C, Cao W, Xin W, Bian J, Ma M (2019) Flexible and free-standing reduced graphene oxide and polypyrrole coated air-laid paper-based supercapacitor electrodes. Ind Eng Chem Res 58:12018–12027. https://doi.org/10.1021/acs.iecr.9b02088

    Article  CAS  Google Scholar 

  77. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Mater 4:265–273. https://doi.org/10.1007/s42114-021-00236-x

    Article  CAS  Google Scholar 

  78. Song X, Wang S, Bao Y, Liu G, Sun W, Ding L, Liu H, Wang H (2017) A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. J Mater Chem A 5:6832–6839. https://doi.org/10.1039/C7TA01171G

    Article  CAS  Google Scholar 

  79. Yan X, Tian L, He M, Chen X (2015) Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett 15:6015–6021. https://doi.org/10.1021/acs.nanolett.5b02205

    Article  CAS  Google Scholar 

  80. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136:13925–13931. https://doi.org/10.1021/ja5082553

    Article  CAS  Google Scholar 

  81. Wei R, Fang M, Dong G, Lan C, Shu L, Zhang H, Bu X, Ho JC (2018) High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl Mater Inter 10:7079–7086. https://doi.org/10.1021/acsami.7b18208

    Article  CAS  Google Scholar 

  82. Gu Y, Pan Z, Zhang H, Zhu J, Yuan B, Pan D, Wu C, Dong B, Guo Z (2020) Synthesis of high performance diesel oxidation catalyst using novel mesoporous AlLaZrTiOx mixed oxides by a modified sol-gel method. Adv Compos Hybrid Mater 3:583–593. https://doi.org/10.1007/s42114-020-00193-x

    Article  CAS  Google Scholar 

  83. Rehman S, Ahmed R, Ma K, Xu S, Tao T, Aslam M, Amir M, Wang J (2021) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78. https://doi.org/10.30919/es8d1263

  84. Li X, Zhao W, Yin R, Huang X, Qian L (2018) A highly porous polyaniline-graphene composite used for electrochemical supercapacitors. Eng Sci 3:89–95. https://doi.org/10.30919/es8d743

  85. Liu W, Du HS, Liu K, Liu HY, Xie HX, Si CL, Pang B, Zhang XY (2021) Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohyd Polym 267:118220. https://doi.org/10.1016/j.carbpol.2021.118220

    Article  CAS  Google Scholar 

  86. Hou C, Yang W, Xie X, Sun X, Wang J, Naik N, Pan D, Mai X, Guo Z, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interf Sci 59:396–407. https://doi.org/10.1016/j.jcis.2021.03.149

    Article  CAS  Google Scholar 

  87. Wang X, Zeng X, Cao D (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63. https://doi.org/10.30919/es.180325

  88. Xie HX, Zou ZF, Du HS, Zhang XY, Wang XM, Yang XH, Wang H, Li GB, Li L, Si CL (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/oxalic acid hydrolysis. Carbohyd Polym 223:115116. https://doi.org/10.1016/j.carbpol.2019.115116

    Article  CAS  Google Scholar 

  89. Zheng Y, Yu Y, Lin W, Jin Y, Yong Q, Huang C (2021) Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment. Bioresour Technol 325:124691. https://doi.org/10.1016/j.biortech.2021.124691

    Article  CAS  Google Scholar 

  90. Xu R, Du H, Wang H, Zhang M, Wu M, Liu C, Yu G, Zhang X, Si C, Choi S, Li B (2021) Valorization of enzymatic hydrolysis residues from corncob into lignin-containing cellulose nanofibrils and lignin nanoparticles. Front Bioeng Biotech 9:677963. https://doi.org/10.3389/fbioe.2021.677963

    Article  Google Scholar 

  91. Dai L, Lu J, Kong F, Liu K, Wei H, Si C (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2:462–470. https://doi.org/10.1007/s42114-019-00112-9

    Article  CAS  Google Scholar 

  92. Wang H, Du HS, Liu K, Liu HY, Xu T, Zhang SY, Chen XQ, Zhang R, Li HM, Xie HX, Zhang XY, Si CL (2021) Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohyd Polym 266:118107. https://doi.org/10.1016/j.carbpol.2021.118107

    Article  CAS  Google Scholar 

  93. Du HS, Liu C, Mu XD, Gong WB, Lv D, Hong YM, Si CL, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23:2389–2407. https://doi.org/10.1007/s10570-016-0963-5

    Article  CAS  Google Scholar 

  94. Zheng L, Yu P, Zhang Y, Wang P, Yan W, Guo B, Huang C, Jiang Q (2021) Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. Int J Biol Macromol 176:13–25. https://doi.org/10.1016/j.ijbiomac.2021.01.103

  95. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  Google Scholar 

  96. Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R, Li H, Xie H, Zhang X, Ma M, Si C (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740

    Article  CAS  Google Scholar 

  97. Wang H, Xie HX, Du HS, Wang XM, Liu W, Duan YX, Zhang XY, Sun L, Zhang XY, Si CL (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohyd Polym 239:116233. https://doi.org/10.1016/j.carbpol.2020.116233

    Article  CAS  Google Scholar 

  98. Si CL, Liu Z, Kim JK, Bae YS (2008) Structure elucidation of phenylethanoid glycosides from Paulownia tomentosa Steud. var. tomentosa wood. Holzforschung 62(2):197–200. https://doi.org/10.1515/HF.2008.047

  99. Aqeel SM, Huang Z, Walton J, Baker C, Falkner D, Liu Z, Wang Z (2018) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1:185–192. https://doi.org/10.1007/s42114-017-0002-5

    Article  CAS  Google Scholar 

  100. Dai L, Zhu W, Lu J, Kong F, Si C, Ni Y (2019) A lignin-containing cellulose hydrogel for lignin fractionation. Green Chem 21(19):5222–5230. https://doi.org/10.1039/c9gc01975h

    Article  CAS  Google Scholar 

  101. Das TK, Ghosh P, Das N (2019) Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Adv Compos Hybrid Mater 2:214–233. https://doi.org/10.1007/s42114-018-0072-z

    Article  CAS  Google Scholar 

  102. Hu W, Wang X, Wu L, Shen T, Ji L, Zhao X, Si C, Jiang Y, Wang G (2016) Pigenin-7-O-beta-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock. Food Func 7(2):1002–1013. https://doi.org/10.1039/c5fo01212k

  103. Si CL, Kim JK, Bae YS, Li SM (2009) Phenolic compounds in the leaves of populus ussuriensis and their antioxidant activities. Planta Med 75(10):1165–1167. https://doi.org/10.1055/s-0029-1185476

    Article  CAS  Google Scholar 

  104. Lin W, Cheng D, Yong Q, Huang C, Huang S (2019) Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. Bioresour Technol 293:122055. https://doi.org/10.1016/j.biortech.2019.122055

    Article  CAS  Google Scholar 

  105. Su Y, Dong H, Li M, Lai C, Huang C, Yong Q (2019) Isolation of the flavonoid from bamboo residues and its application as metal ion sensor in vitro. Polymers 11(9):1377. https://doi.org/10.3390/polym11091377

    Article  CAS  Google Scholar 

  106. Huang C, Su Y, Shi J, Yuan C, Zhai S, Yong Q (2019) Revealing the effects of centuries of ageing on the chemical structural features of lignin in archaeological fir woods. New J Chem 43(8):3520–3528. https://doi.org/10.1039/c9nj00026g

    Article  CAS  Google Scholar 

  107. Mirabootalebi SO (2020) A new method for preparing buckypaper by pressing a mixture of multi-walled carbon nanotubes and amorphous carbon. Adv Compos Hybrid Mater 3:336–343. https://doi.org/10.1007/s42114-020-00167-z

    Article  CAS  Google Scholar 

  108. Dai L, Li Y, Kong F, Liu K, Si C, Ni Y (2019) Lignin-based nanoparticles stabilized pickering emulsion for stability improvement and thermal-controlled release of trans-resveratrol. ACS Sustain Chem Eng 7(15):13497–13504. https://doi.org/10.1021/acssuschemeng.9b02966

    Article  CAS  Google Scholar 

  109. Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 7923068. https://doi.org/10.1155/2018/7923068

  110. Huang C, Sun R, Chang H, Yong Q, Jameel H, Phillips R (2019) Production of dissolving grade pulp from tobacco stalk through SO2-ethanol-water fractionation, alkaline extraction, and bleaching processes. Bioresoures 14(3):5544–5558. https://doi.org/10.15376/biores.14.3.5544-5558

  111. He J, Huang C, Lai C, Jin Y, Ragauskas A, Yong Q (2020) Investigation of the effect of lignin/pseudo-lignin on enzymatic hydrolysis by Quartz Crystal Microbalance. Ind Crop Prod 157:112927. https://doi.org/10.1016/j.indcrop.2020.112927

    Article  CAS  Google Scholar 

  112. Huang C, Wang X, Liang C, Jia X, Yang G, Xu J, Yong Q (2019) A sustainable process for procuring. Biotechnol Biofuels 12:189. https://doi.org/10.1186/s13068-019-1527-3

    Article  CAS  Google Scholar 

  113. Si C, Jiang J, Liu S, Hu H, Ren XD, Yu GJ, Yu GH (2013) A new lignan glycoside and phenolics from the branch wood of Pinus banksiana Lambert. Holzforschung 67(4):357–363. https://doi.org/10.1515/hf-2012-0137

    Article  CAS  Google Scholar 

  114. Tian Y, Du H, Zhang M, Zheng Y, Guo Q, Zhang H, Luo J, Zhang X (2019) Microwave synthesis of MoS2/MoO2@CNT nanocomposites with excellent cycling stability for supercapacitor electrodes. J Mater Chem C 7:9545–9555. https://doi.org/10.1039/C9TC02391G

    Article  CAS  Google Scholar 

  115. Zhang M, Nautiyal A, Du H, Wei Z, Zhang X, Wang R (2021) Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor. Electrochim Acta 376:138037. https://doi.org/10.1016/j.electacta.2021.138037

    Article  CAS  Google Scholar 

  116. Sun D, He L, Chen R, Liu Y, Lv B, Lin S, Lin B (2019) Biomorphic composites composed of octahedral Co3O4 nanocrystals and mesoporous carbon microtubes templated from cotton for excellent supercapacitor electrodes. Appl Surf Sci 465:232–240. https://doi.org/10.1016/j.apsusc.2018.09.178

    Article  CAS  Google Scholar 

  117. Xiao L, Qi H, Qu K, Shi C, Cheng Y, Sun Z, Yuan B, Huang Z, Pan D, Guo Z (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4:306–316. https://doi.org/10.1007/s42114-021-00223-2

    Article  CAS  Google Scholar 

  118. Li S, Yang K, Ye P, Ma K, Zhang Z, Huang Q (2020) Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl Surf Sci 503:144090. https://doi.org/10.1016/j.apsusc.2019.144090

    Article  CAS  Google Scholar 

  119. Tai Z, Lang J, Yan X, Xue Q (2012) Mutually enhanced capacitances in carbon nanofiber/cobalt hydroxide composite paper for supercapacitor. J Electrochem Soc 159(4):485–491. https://doi.org/10.1149/2.110204jes

    Article  CAS  Google Scholar 

  120. Guan Q, Cheng J, Wang B, Ni W, Gu G, Li X, Huang L, Yang G, Nie F (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6:7626–7632. https://doi.org/10.1021/am5009369

    Article  CAS  Google Scholar 

  121. Tummala R, Guduru R, Mohanty P (2012) Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J Power Sources 209: 44–51. https://doi.org/10.1016/j.jpowsour.2012.02.071

  122. Huang C, He J, Min D, Lai C, Yong Q (2016) Understanding the nonproductive enzyme adsorption and physicochemical properties of residual lignins in moso bamboo pretreated with sulfuric acid and kraft pulping. Appl Biochem Biotech 180:1508–1523. https://doi.org/10.1007/s12010-016-2183-8

    Article  CAS  Google Scholar 

  123. Zhang M, Nautiyal A, Du H, Li J, Liu Z, Zhang X, Wang R (2020) Polypyrrole film based flexible supercapacitor: mechanistic insight into influence of acid dopants on electrochemical performance. Electrochim Acta 357:136877. https://doi.org/10.1016/j.electacta.2020.136877

    Article  CAS  Google Scholar 

  124. Huang C, He J, Wang Y, Min D, Yong Q (2015) Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production. Bioresour Technol 193:142–149. https://doi.org/10.1016/j.biortech.2015.06.073

    Article  CAS  Google Scholar 

  125. Huang C, He J, Li X, Min D, Yong Q (2015) Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes. Bioresour Technol 192:471–477. https://doi.org/10.1016/j.biortech.2015.06.008

  126. Tang W, Wu X, Huang C, Lin Z, Lai C, Yong Q (2021) Revealing migration discipline of lignin during producing fermentable sugars from wheat straw through autohydrolysis. Ind Crop Prod 171:113849. https://doi.org/10.1016/j.indcrop.2021.113849

    Article  CAS  Google Scholar 

  127. Li X, Lu X, Nie S, Wang M, Yu Z, Duan B, Yang J, Xu R, Lu L, Si C (2020) Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Ind Crop Prod 145:112154. https://doi.org/10.1016/j.indcrop.2020.112154

  128. Qu K, Sun Z, Shi C, Wang W, Xiao L, Tian J, Huang Z, Guo Z (2021) Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67) derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00293-2

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Foundation of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences (No. GZKF202001), and the Foundation of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China (No. ZR201901). The authors also gratefully acknowledge the “Beyond Research Innovation & Development for Good Enterprises + ” Project, supported by the Ministry of Education (MOE), the Technology Development Program (S3030198) funded by the Ministry of SMEs and Startups (MSS, Korea), 2021 Research Grant from Kangwon National University and this work was also partially supported by 2020 work was also partially supported by 2020 Jeollannam-do (“Industry-University-Institute collaboration agricultural industrial complex R&D supporting program” operated by Jeonnam Technopark) to S.E.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanling Si, Xing-Xiang Ji, Sun-Eun Choi or Xinyu Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Du, H., Liu, K. et al. Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4, 1367–1383 (2021). https://doi.org/10.1007/s42114-021-00344-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00344-8

Keywords

Navigation