Skip to main content
Log in

Antifungal effect of seven essential oils on bamboo

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As antimicrobial agents, essential oils (EOs) have been used by more and more companies as alternatives to traditional chemicals. In the study, seven EOs from Pinus massoniana, cinnamon, Star anise, Litsea cubeba, Cinnamomum camphora, Lemon eucalyptus, and Camphor from Guangxi were researched for their antifungal performances and chemical components. With the help of the diffusion in a disc way as well as the minimum inhibitory concentration (MIC) to three fungi, the antifungal impacts and the bamboo slices anti-mold tests of these EOs were studied. The compositions of these oils were identified. Litsea cubeba EO, Anise EO, and Cinnamon EO exhibited super antifungal activity against Trichoderma viride, Aspergillus niger, and Penicillium citrinum. Treated by Cinnamon EO, Anise EO, or Litsea cubeba EO, few molds were observed on the surface of bamboo chips, which showed that these EOs had a good antifungal effect on molds of bamboo.

Graphical abstract

Antifungal effect of seven essential oils on bamboo

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li W (2000) Analysis on world forest resources protection and China’s forestry development polices. Resource Science 22(6):71–76

    Google Scholar 

  2. Hakeem KR, Ibrahim S, Ibrahim FH, Tombuloglu H (2015) Bamboo biomass: various studies and potential applications for value-added products. Springer International Publishing, ISBN: 978–3–319–13846–6

  3. De Flander R (2009) One laminated bamboo-frame house per hectare per year. CONSTR BUILD MATER 23(1):210–218. https://doi.org/10.1016/j.conbuildmat.2008.01.004

    Article  Google Scholar 

  4. Gupta A, Kumar A (2008) Potential of bamboo in sustainable development. Asia Pac Bus Rev 4(3):100–107. https://doi.org/10.1177/097324700800400312

    Article  Google Scholar 

  5. Scurlock JMO (2000) Bamboo: an over-looked biomasss resource? Biomass Bioenerg 19(4):229–244. https://doi.org/10.1016/S0961-9534(00)00038-6

    Article  CAS  Google Scholar 

  6. Shaikh VS, Nazeruddin GM, Bloukh Y, Edis Z, Pathan HM (2020) A Recapitulation of virology, modes of dissemination, diagnosis, treatment, and preventive measures of COVID-19: a review. Engineered Science 10:11–23. https://doi.org/10.30919/es8d1009

    Article  CAS  Google Scholar 

  7. Ullah MW, Manan S, Guo Z, Yang G (2020) Therapeutic options for treating COVID-19. Engineered Science 10:8–10. https://doi.org/10.30919/es8d765

    Article  CAS  Google Scholar 

  8. Ma Y, Zhuang Z, Ma M, Yang Y, Li W, Dong M, Wu S, Ding T, Guo Z (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182:121808. https://doi.org/10.1016/j.polymer.2019.121808

    Article  CAS  Google Scholar 

  9. Manan S, Ullah MW, Guo Z, Yang G (2020) Impact of COVID-19 on environment sustainability. ES Energy & Environment 8:1–2. https://doi.org/10.30919/esee8c378

    Article  CAS  Google Scholar 

  10. Shaikh YI, Sameer Shaikh ÂVS, Ahmed K, Nazeruddin GM, Pathan ÂHM (2020) The revelation of various compounds found in nigella sativa L. (Black Cumin) and their possibility to Iinhibit COVID-19 infection based on the molecular docking and physical properties. Engineered Science 11:31–35. https://doi.org/10.30919/es8d1127

    Article  CAS  Google Scholar 

  11. Ma Y, Ma M, Yin X, Shao Q, Lu N, Feng Y, Lu Y, Wujcik EK, Mai X, Wang C, Guo Z (2018) Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances. Polymer 156:128–135. https://doi.org/10.1016/j.polymer.2018.09.051

    Article  CAS  Google Scholar 

  12. Sivakumar D, Bautista-Banos S (2014) A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot 64:27–37. https://doi.org/10.1016/j.cropro.2014.05.012

    Article  CAS  Google Scholar 

  13. Chen F, Long X, Yu M, Liu Z, Liu L, Shao H (2013) Phenolics and antifungal activities analysis in industrial crop Jerusalem Artichoke (Helianthus tuberosus L.) leaves. Ind Crops Prod 47:339–345. https://doi.org/10.1016/j.indcrop.2013.03.027

    Article  CAS  Google Scholar 

  14. de Medeiros FC, Gouveia FN, Bizzo HR, Vieira RF, Del Menezzi CH (2016) fungicidal activity of essential oils from Brazilian Cerrado species against wood decay fungi. Int Biodeterior Biodegradation 114:87–93. https://doi.org/10.1016/j.ibiod.2016.06.003

    Article  CAS  Google Scholar 

  15. Jing L, Lei Z, Li L, Xie R, Xi W, Guan Y, Sumner LW, Zhou Z (2014) antifungal activity of citrus essential oils. J Agric Food Chem 62:3011–3033. https://doi.org/10.1021/jf5006148

    Article  CAS  Google Scholar 

  16. Juárez ZN, Hernández LR, Bach H, Sánchez-Arreola E, Bach H (2015) Antifungal activity of essential oils extracted from Agastache mexicana ssp. Xolocotziana and Porophyllum Linaria against post-harvest pathogens. Ind Crops Prod 74:178–182. https://doi.org/10.1016/j.indcrop.2015.04.058

    Article  CAS  Google Scholar 

  17. Salem MZ, Zidan YE, Mansour MM, Hadidi EI, N M, Elgat W A A. (2016) Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. Int Biodeterior Biodegradation 106:88–96. https://doi.org/10.1016/j.ibiod.2015.10.010

    Article  CAS  Google Scholar 

  18. Regnier T, Combrinck S, Veldman W, Du Plooy W (2014) Application of essential oils as multi-target fungicides for the control of geotrichum citri-aurantii and other postharvest pathogens of citrus. Ind Crops Prod 61:151–159. https://doi.org/10.1016/j.indcrop.2014.05.052

    Article  CAS  Google Scholar 

  19. Kumar A, Kamal A, Singh S, Padalia RC, Tandon S, Chauhan A, Saikia D, Verma RS (2019) Chemical composition, antimicrobial activity, kinetics and mechanism of action of Himalayan-thyme (Thymus linearis Benth.). J Essent Oil Res 1:1–10. https://doi.org/10.1080/10412905.2019.1662337

    Article  CAS  Google Scholar 

  20. Ma YN, Chen CJ, Li QQ, Wang W, Xu FR, Cheng YX, Dong X (2019) Fungicidal activity of essential oils from cinnamomum cassia against the pathogenic fungi of panax notoginseng diseases. Chemistry & Biodiversity 16 (11). https://doi.org/10.1002/cbdv.201900416

  21. De Corato U, Maccioni O, Trupo M, Di Sanzo G (2010) Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post harvest spoilage fungi. Crop Prot 29(2):142–147. https://doi.org/10.1016/j.cropro.2009.10.012

    Article  CAS  Google Scholar 

  22. Hossain MA, Shah MD, Sang SV, Sakari M (2012) Chemical composition and antibacterial properties of the essential oils and crude extracts of Merremia borneensis. Journal of King Saud University - Science 24(3):243–249

    Article  Google Scholar 

  23. Pitarokili D, Tzakou O, Loukis A, Harvala C (2003) Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J Agric Food Chem 51(11):3294–3301. https://doi.org/10.1021/jf0211534

    Article  CAS  Google Scholar 

  24. Mei C, Wang X, Chen Y, Wang Y, Yao F, Li Z, Gu Q, Song D (2020) Antibacterial activity and mechanism of Litsea cubeba essential oil against food contamination by Escherichia coli and Salmonella enterica. Journal of Food Safety 40 (4)

  25. Hu W, Li C, Dai J, Cui H, Lin L (2019) Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind Crops Prod 130:34–41. https://doi.org/10.1016/j.indcrop.2018.12.078

    Article  CAS  Google Scholar 

  26. Ju J, Xie Y, Yu H, Guo Y, Cheng Y, Zhang R, Yao W (2020) Major components in Lilac and Litsea cubeba essential oils kill Penicillium roqueforti through mitochondrial apoptosis pathway. Ind Crops Prod 149:112349. https://doi.org/10.1016/j.indcrop.2020.112349

    Article  CAS  Google Scholar 

  27. Liu Q, Zhang M, Bhandari B, Xu J, Yang C (2020) Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control 107:106771. https://doi.org/10.1016/j.foodcont.2019.106771

    Article  CAS  Google Scholar 

  28. Lee J-S, Chang Y, Park MA, Oh J, Han J (2020) Insect-repellent activity of PET-based film with star anise essential oil and its pilot-scale production for food packaging. Food Packag Shelf Life 25:100539. https://doi.org/10.1016/j.fpsl.2020.100539

    Article  Google Scholar 

  29. Li Y, Wang Y, Kong W, Yang S, Luo J, Yang M (2020) Illicium verum essential oil, a potential natural fumigant in preservation of lotus seeds from fungal contamination. Food Chem Toxicol 141:111347. https://doi.org/10.1016/j.fct.2020.111347

    Article  CAS  Google Scholar 

  30. Delespaul Q, de Billerbeck VG, Roques CG, Michel G, Marquier-Vinuales C, Bessiere JM (2000) The antifungal activity of essential oils as determined by different screening methods. J Essent Oil Res 12(2):256–266. https://doi.org/10.1080/10412905.2000.9699510

    Article  CAS  Google Scholar 

  31. Billerbeck VG, Roques CG, Bessiere JM, Fonvieille JL, Dargent R (2001) Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger. Can J Microbiol 47 (1):9–17. https://doi.org/10.1139/cjm-47-1-9

  32. Li YJ, Kong WJ, Li MH, Liu HM, Zhao X, Yang SH, Yang MH (2016) Litsea cubeba essential oil as the potential natural fumigant: Inhibition of Aspergillus flavus and AFB(1) production in licorice. Ind Crops Prod 80:186–193. https://doi.org/10.1016/j.indcrop.2015.11.008

    Article  CAS  Google Scholar 

  33. Saputra SK, Sutantyo D, Farmasyanti CA, Alhasyimi AA (2019) The effect of the addition of propolis to resin-modified glass ionomer cement bracket adhesive materials on the growth inhibition zone of Streptococcus mutans. F1000 Research 8:2105. https://doi.org/10.12688/f1000research.20717.1

  34. Walker MA, Singh A, Gibson TW, Rousseau J, Weese SJ (2020) Presence of Qac genes in clinical isolates of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius and their impact on chlorhexidine digluconate susceptibility Vet Surg 49. https://doi.org/10.1111/vsu.13413

  35. Huang XD, Hse CY, Shupe TF (2014) Study on the mould-resistant properties of moso bamboo treated with high pressure and amylase. BioResources 9(1):497–509. https://doi.org/10.15376/biores.9.1.497-509

    Article  CAS  Google Scholar 

  36. de Fernando CM, M, Fernando N G, Humberto R B, Roberto F V, Cláudio H S D M, (2016) Fungicidal activity of essential oils from Brazilian Cerrado species against wood decay fungi. Int Biodeterior Biodegradation 114:87–93. https://doi.org/10.1016/j.ibiod.2016.06.003

    Article  CAS  Google Scholar 

  37. Sun FL, Bao BF, Ma LF, Chen AL, Duan XF (2015) Mould-resistance of bamboo treated with the compound of chitosan-copper complex and organic fungicides. J Wood Sci 58:51–56. https://doi.org/10.1007/s10086-011-1223-9

    Article  CAS  Google Scholar 

  38. Guo XG, Chen BR, Wu XL, Li JM, Sun Q (2020) Utilization of cinnamaldehyde and zinc oxide nanoparticles in a carboxymethylcellulose-based composite coating to improve the postharvest quality of cherry tomatoes. Int J Biol Macromol 160:175–182. https://doi.org/10.1016/j.ijbiomac.2020.05.201

    Article  CAS  Google Scholar 

  39. Silovska T, Matousek J, Fajstavr D, Svorcik V, Kolska Z (2020) Antimicrobial effect of polymers grafted with cinnamaldehyde Mater Lett 277 https://doi.org/10.1016/j.matlet.2020.128274

  40. Wei J, Bi Y, Xue H, Wang Y, Zong Y, Prusky D (2020) Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis. J Appl Microbiol 129(2):256–265. https://doi.org/10.1111/jam.14601

    Article  CAS  Google Scholar 

  41. Papanastasiou SA, Ioannou CS, Papadopoulos NT (2020) Oviposition-deterrent effect of linalool - a compound of citrus essential oils - on female Mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae). Pest Manag Sci 76(9):3066–3077. https://doi.org/10.1002/ps.5858

    Article  CAS  Google Scholar 

  42. Li YJ, Wang YD, Kong WJ, Yang SH, Luo JY, Yang MH 2020 Illicium verum essential oil, a potential natural fumigant in preservation of lotus seeds from fungal contamination Food Chem Toxicol 141 https://doi.org/10.1016/j.fct.2020.1113472020.111347

  43. Chaudhary SC, Siddiqui MS, Athar M, Alam MS (2012) D-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Hum Exp Toxicol 31(8):798–811. https://doi.org/10.1177/0960327111434948

    Article  CAS  Google Scholar 

  44. Liu TT, Yang TS (2012) Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems 156(1):68–75. https://doi.org/10.1016/j.ijfoodmicro.2012.03.005

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial supports from the National Natural Science Foundation of China (51964032), the 13th Five-Year Plan of National Key R&D Projects of China (2018YFD0600400), the Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (2020-KF14), and Specific Research Project of Guangxi for Research Bases and Talents (AD18126005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Wu or Bingnan Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Niu, Y., Wu, C. et al. Antifungal effect of seven essential oils on bamboo. Adv Compos Hybrid Mater 4, 552–561 (2021). https://doi.org/10.1007/s42114-021-00251-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00251-y

Keywords

Navigation