Skip to main content
Log in

Surface post-functionalization of COFs by economical strategy via multiple-component one-pot tandem reactions and their application in adsorption of pesticides

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The economical and convenient one-pot approach plays a substantial role in chemical synthesis and material design. However, the related reports on the synthesis and functionalization of covalent organic frameworks (COFs) by the one-pot approach are limited. Herein, we selectively introduced three different functional groups (fluoroalkyl, borate, and alkyl groups) to verify that the multi-component one-pot tandem reaction could be applied into surface post-functionalization of COFs as an economical strategy. After proving the practicability of the economical strategy, we also prepared two kinds of fluorine-containing COFs (COF-F0.5 and COF-F) and butyl-containing COF (COF-Bu) via the economical strategy to explore the effect of COF nature (porosity and the number of functional groups) on fipronil adsorption. The results showed that COF-F0.5 possessing the largest Brunauer–Emmett–Teller (BET) specific surface area (1573 m2 g−1) exhibited a larger saturated adsorption capacity (194.7 mg g−1) than COF-F (149.8 mg g−1). Furthermore, comparing with COF-Bu (122.4 mg g−1), COF-F (149.8 mg g−1) containing functional groups showed a greater adsorption capacity.

Graphical abstract

Post-functionalization of covalent organic frameworks by multiple-component one-pot tandem reactions was reported and the related application in the adsorption of pesticides was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayashi Y (2016) Pot economy and one-pot synthesis. Chem Sci 7: 866–880

    Article  CAS  Google Scholar 

  2. Cui P, Liu Q, Wang J et al (2019) One-pot synthesis of chiral β-hydroxysulfones from alkynes via aerobic oxysulfonylation and asymmetric reduction in MeOH/H2O. Green Chem 21:634–639

    Article  CAS  Google Scholar 

  3. KraEm J, Ollevier T (2017) Atom economical synthesis of N-alkylbenzamides via the iron(III) sulfate catalyzed rearrangement of 2-alkyl-3-aryloxaziridines in water and in the presence of a surfactant. Green Chem 19:1263–1267

    Article  CAS  Google Scholar 

  4. Talekar S, Joshi A, Kambale S et al (2017) A tri-enzyme magnetic nanobiocatalyst with one pot starch hydrolytic activity. Chem Eng J 325:80–90

    Article  CAS  Google Scholar 

  5. Behr A, Vorholt AJ, Ostrowski KA, Seidensticker T (2014) Towards resource efficient chemistry: tandem reactions with renewables. Green Chem 16:982–1006

    Article  CAS  Google Scholar 

  6. Hernandez JG, Juaristi E (2012) Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chem Commun 48:5396–5409

    Article  CAS  Google Scholar 

  7. Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975

    Article  CAS  Google Scholar 

  8. Wu S, Zhou Y, Li Z (2019) Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun 55:883–896

    Article  CAS  Google Scholar 

  9. Liu L, Meng WK, Zhou YS et al (2019) β-Ketoenamine-linked covalent organic framework coating for ultra-high-performance solid-phase microextraction of polybrominated diphenyl ethers from environmental samples. Chem Eng J 356:926–933

    Article  CAS  Google Scholar 

  10. Huang N, Zhai L, Xu H, Jiang D (2017) Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J Am Chem Soc 139:2428–2434

    Article  CAS  Google Scholar 

  11. Li Y, Chen W, Xing G et al (2020) New synthetic strategies toward covalent organic frameworks. Chem Soc Rev 49:2852–2868

    Article  CAS  Google Scholar 

  12. Wang T, Wu H, Zhao S et al (2019) Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation. Chem Eng J 384:123347

    Article  CAS  Google Scholar 

  13. Feng T, Wang JM, Gao ST et al (2018) Covalent triazine frameworks supported CoPd nanoparticles for boosting hydrogen generation from formic acid. Appl Surf Sci 469:431–436

    Article  CAS  Google Scholar 

  14. Li J, Jing X, Li Q et al (2020) Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev 49:3565–3604

    Article  CAS  Google Scholar 

  15. Nguyen HL, Gropp C, Yaghi OM (2020) Reticulating 1D ribbons into 2D covalent organic frameworks by imine and imide linkages. J Am Chem Soc 142:2771–2776

    Article  CAS  Google Scholar 

  16. Zhang B, Mao H, Matheu R et al (2019) Reticular synthesis of multinary covalent organic frameworks. J Am Chem Soc 141:11420–11424

    Article  CAS  Google Scholar 

  17. Cui W-R, Jiang W, Zhang C-R et al (2020) Regenerable carbohydrazide-linked fluorescent covalent organic frameworks for ultrasensitive detection and removal of mercury. ACS Sustain Chem Eng 8:445–451

    Article  CAS  Google Scholar 

  18. Liang Y, Feng L, Liu X et al (2021) Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning. Chem Eng J 404:127095

    Article  CAS  Google Scholar 

  19. Uribe-Romo FJ, Doonan CJ, Furukawa H et al (2011) Crystalline covalent organic frameworks with hydrazone linkages. J Am Chem Soc 133:11478–11481

    Article  CAS  Google Scholar 

  20. Huang N, Krishna R, Jiang D (2015) Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening. J Am Chem Soc 137:7079–7082

    Article  CAS  Google Scholar 

  21. Pyles DA, Crowe JW, Baldwin LA, McGrier PL (2016) Synthesis of benzobisoxazole-linked two-dimensional covalent organic frameworks and their carbon dioxide capture properties. ACS Macro Lett 5:1055–1058

    Article  CAS  Google Scholar 

  22. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883

    Article  CAS  Google Scholar 

  23. Yu Y, Li G, Liu J, Yuan D (2020) A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(II). Chem Eng J 401:126139

    Article  CAS  Google Scholar 

  24. Lu Y, Liang Y, Zhao Y et al (2021) Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl Mater Interfaces 13:1644–1650

    Article  CAS  Google Scholar 

  25. Liu Z, Su Q, Ju P et al (2020) A hydrophilic covalent organic framework for photocatalytic oxidation of benzylamine in water. Chem Commun 56:766–769

    Article  CAS  Google Scholar 

  26. Liu W, Li X, Wang C et al (2019) A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J Am Chem Soc 141:17431–17440

    Article  CAS  Google Scholar 

  27. Dalapati S, Addicoat M, Jin S et al (2015) Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat Commun 6:7786

    Article  CAS  Google Scholar 

  28. Jiang Q, Li Y, Zhao X et al (2018) Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li–S batteries. J Mater Chem A 6:17977–17981

    Article  CAS  Google Scholar 

  29. Cheng W, Yi M, Guiqing L et al (2018) Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium–sulfur batteries. J Mater Chem A 6:17186–17191

    Article  Google Scholar 

  30. Wang S, Liang Y, Dai T et al (2021) Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. J Colloid Interface Sci 591:264–272

    Article  CAS  Google Scholar 

  31. Wang K, Jia Z, Bai Y et al (2020) Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction. J Am Chem Soc 142:11131–11138

    Article  CAS  Google Scholar 

  32. Li X-T, Zou J, Wang T-H et al (2020) Construction of covalent organic frameworks via three-component one-pot Strecker and Povarov reactions. J Am Chem Soc 142:6521–6526

    Article  CAS  Google Scholar 

  33. Wang P-L, Ding S-Y, Zhang Z-C et al (2019) Constructing robust covalent organic frameworks via multicomponent reactions. J Am Chem Soc 141:18004–18008

    Article  CAS  Google Scholar 

  34. Wu N, Zhao LX, Jiang CY et al (2020) A naked-eye visible colorimetric and fluorescent chemosensor for rapid detection of fluoride anions: Implication for toxic fluorine-containing pesticides detection. J Mol Liq 302:112549

    Article  CAS  Google Scholar 

  35. Lin C, Qiu Y, Fan J et al (2020) Fabrication of photo-responsive cellulose based intelligent imprinted material and selective adsorption on typical pesticide residue. Chem Eng J 394:124841

    Article  CAS  Google Scholar 

  36. Zhang B, Li B, Wang Z (2020) Creation of carbazole-based fluorescent porous polymers for recognition and detection of various pesticides in water. ACS Sensors 5:162–170

    Article  CAS  Google Scholar 

  37. Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912

    Article  CAS  Google Scholar 

  38. Merí-Bofí L, Royuela S, Zamora F et al (2017) Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(II). J Mater Chem A 5:8933–8938

    Article  Google Scholar 

  39. Rohde RD, Agnew HD, Yeo W-S et al (2006) A non-oxidative approach toward chemically and electrochemically functionalizing Si(111). J Am Chem Soc 128:9518–9525

    Article  CAS  Google Scholar 

  40. Jiang Y, Liu C, Li Y, Huang A (2019) Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation. J Memb Sci 587:117177

    Article  CAS  Google Scholar 

  41. Dong A, Zhu Y, Ren M et al (2019) Remarkably enhanced CO2 uptake and uranium extraction by functionalization of cyano-bearing conjugated porous polycarbazoles. Eng Sci 6:44–52

    Google Scholar 

  42. Dong A, Wang D, Dai T et al (2018) Micro/mesoporous conjugated fluorinated iron-porphyrin polymer: porosity and heterogeneous catalyst for oxidation. Adv Compos Hybrid Mater 1:696–704

    Article  CAS  Google Scholar 

  43. Dong A, Dai T, Ren M et al (2018) Functionalization and fabrication of soluble polymers of intrinsic microporosity for CO2 transformation and uranium extraction. Eng Sci 5:56–65

    Google Scholar 

  44. Liu S, Liang L, Meng L et al (2020) Synergy of plasmonic silver nanorod and water for enhanced planar perovskite photovoltaic devices. Sol RRL 4:1900231

    Article  CAS  Google Scholar 

  45. Zhang J, Zhang W, Wei L et al (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304:1970035

    Article  Google Scholar 

  46. Zhang Z, Zhang J, Li S et al (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos Part B Eng 176:107338

    Article  CAS  Google Scholar 

  47. Chang Z, Liang Y, Wang S et al (2020) A novel fluorescent covalent organic framework containing boric acid groups for selective capture and sensing of cis-diol molecules. Nanoscale 12:23748–23755

    Article  CAS  Google Scholar 

  48. Liu X, Wang S, Liang Y et al (2021) Adenine-bearing covalent organic frameworks via one-pot tandem reaction for selective adsorption of Ag+. Microporous Mesoporous Mater 315:110923

    Article  CAS  Google Scholar 

  49. Du Z, Deng S, Zhang S et al (2017) Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite. Environ ence Technol 51:8027–8035

    Article  CAS  Google Scholar 

  50. Sun Q, Aguila B, Perman JA et al (2018) Integrating superwettability within covalent organic frameworks for functional coating. Chem 4:1726–1739

    Article  CAS  Google Scholar 

  51. Du Z, Deng S, Bei Y et al (2014) Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents–a review. J Hazard Mater 274:443–454

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Hainan Science and Technology Major Project (ZDKJ2019013), the National Natural Science Foundation of China (52063014, 51873053, 51775152, 61761016, and U1967213), the National Key R&D program of China (2019YFC1904304 and 2018YFE0103500), and the Fundamental Research Funds for the Central Universities (2020YQHH01). Ning Yuan also received funding from the Foundation of State Key Laboratory of Structural Chemistry (20190003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chen.

Ethics declarations

Conflict of interest

There authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3163 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yuan, N., Dai, T. et al. Surface post-functionalization of COFs by economical strategy via multiple-component one-pot tandem reactions and their application in adsorption of pesticides. Adv Compos Hybrid Mater 5, 1439–1449 (2022). https://doi.org/10.1007/s42114-021-00241-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00241-0

Keywords

Navigation