Skip to main content
Log in

Enhancement of the photoelectric properties of composite oxide TiO2-SrTiO3 thin films

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Enhancement of photoelectric properties related to surface chemistry states of composite oxide TiO2-SrTiO3 has attracted extensive interest over the past few years owing to its unique internal structure. In this paper, the composite oxide TiO2-SrTiO3 thin films have been successfully fabricated via sol-gel method. Various characterizations such as X-ray diffraction, field emission scanning electron microscope, and X-ray photo electron spectroscopy are utilized to investigate the crystal phase, surface morphology, and chemical compositions of the composite oxide TiO2-SrTiO3 thin film. By measuring the photoluminescence spectrum, we investigate the band gap and the electron transition. It is found that PL result is closely related to the information of charge carrier trapping. Current-voltage characteristics indicate that the TiO2-SrTiO3 has better photoelectric performance than that of pure strontium titanate and rutile titanium dioxide. Additionally, the composite oxide TiO2-SrTiO3 thin film shows favorable photoelectric response, high sensitivity, and good stabilization. First-principle calculation based upon the density functional theory (DFT) is the first time to explicate the energy band and state density of the composite oxide of the TiO2-SrTiO3 with the appropriate model. This study deepens understanding of the photoelectric properties and electron structure of the new composite oxide TiO2-SrTiO3 thin film, which is expected for further applications in optoelectronic devices.

Graphical abstract

The composite oxide TiO2-SrTiO3 thin film device performs more better photoelectric activity than the pure SrTiO3 and TiO2 thin film devices. The short-circuit current (Isc) is 0.047 μA and the open-circuit voltage (Voc) is − 0.8 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pai YY, Tylan-Tyler A, Irvin P, Levy J (2018) Physics of SrTiO3-based heterostructures and nanostructures: a review. Rep Prog Phys 81(3):036503

    Article  CAS  Google Scholar 

  2. Zhang H, Lu Y, Han W, Zhu J, Zhang Y, Huang W (2020) Solar energy conversion and utilization: towards the emerging photo-electrochemical devices based on perovskite photovoltaics, Chem Eng J 124766

  3. Wang Y, Shen R, Jin X, Zhu P, Ye Y, Hu Y (2011) Formation of CuO nanowires by thermal annealing copper film deposited on Ti/Si substrate. Appl Surf Sci 258(1):201–206

    Article  CAS  Google Scholar 

  4. Alexandrov VE, Maier J, Evarestov RA (2008) Ab initio study of SrFexTi1−xO3: Jahn-teller distortion and electronic structure. Phys Rev B 77:075111

    Article  CAS  Google Scholar 

  5. Gong Y, Chen C, Zhang F, He X, Zeng H, Yang Q, Yi Z (2020) Ferroelectric photovoltaic and flexo‐photovoltaic effects in (1-x)(Bi0.5Na0.5)TiO3-xBiFeO3 systems under visible light. J Am Ceram Soc 103(8):4363–4372

  6. Yan S, Liu T, Zhang Y, Sun D, Li X, Xie G, Xu L (2017) Enhanced photoelectrochemical performance of hydrogen-treated SrTiO3/TiO2 nanotube arrays heterojunction composite. J Electroanal Chem 807:213–219

    Article  CAS  Google Scholar 

  7. Zhao Z, Goncalves RV, Barman SK, Willard EJ, Byle E, Perry R, Osterloh FE (2019) Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO3 in natural sunlight. Energ Environ Sci 12(4):1385–1395

    Article  CAS  Google Scholar 

  8. Jiang D, Sun X, Wu X, Shi L, Du F (2019) Hydrothermal synthesis of single-crystal Cr-doped SrTiO3 for efficient visible-light responsive photocatalytic hydrogen evolution. Mater Res Express 7(1)

  9. Kanta AF, Poelman M, Decroly A (2015) Electrochemical characterisation of TiO2 nanotube array photoanodes for dye-sensitized solar cell application. Sol Energ Mat Sol C 133:76–81

    Article  CAS  Google Scholar 

  10. Liu X, Yan R, Zhu J, Zhang J, Liu X (2015) Growing TiO2 nanotubes on graphene nanoplatelets and applying the nanonanocomposite as scaffold of electrochemical tyrosinase biosensor. Sensor Actuat B-Chem 209:328–335

    Article  CAS  Google Scholar 

  11. Kong J, Rui Z, Ji H (2017) Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance. Ind Eng Chem Res 7b:026–71.

  12. Hou C, Wang J, Du W, Wang J, Du Y, Liu C, Guo Z (2019) One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J Mater Chem A 7(22):13460–13472

    Article  CAS  Google Scholar 

  13. Sun L, Mao S, Dillon SJ (2012) Approximating the metastable defect concentration in supersaturated materials: a case study of the SrTiO3/TiO2 system. J Am Ceram Soc 95:788–792

    Article  CAS  Google Scholar 

  14. Hou C, Wang J, Zhang W, Li J, Zhang R, Zhou J, Kong B (2020) Interfacial superassembly of grape-like MnO-Ni@ C frameworks for superior lithium storage. ACS Appl Mater Inter 12(12):13770–13780

    Article  CAS  Google Scholar 

  15. Zhang X, Huo K, Hu L, Wu Z, Chu PK (2010) Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates. J Am Ceram Soc 93(9):2771–2778

    Article  CAS  Google Scholar 

  16. Xie Z, Yang Y, Fang L, Wang Y, Ding X, Yuan G, Liu JM (2019) Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film. Appl Phys Lett 115(11):112902

    Article  CAS  Google Scholar 

  17. Pang D, Liu X, He X, Chen C, Zheng J, Yi Z (2019) Anomalous photovoltaic effect in Bi(Ni2/3Ta1/3) O3-PbTiO3 ferroelectric solid solutions. J Am Ceram Soc 102(6):3448–3456

    Article  CAS  Google Scholar 

  18. Su EC, Huang BS, Wey MY (2016) Enhanced optical and electronic properties of a solar light-responsive photocatalyst for efficient hydrogen evolution by SrTiO3/TiO2 nanotube combination. Sol Energy 134:52–63

    Article  CAS  Google Scholar 

  19. Zhu YF, Xu L, Hu J, Zhang J, Du RG, Lin CJ (2014) Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel. Electrochim Acta 121:361–368

    Article  CAS  Google Scholar 

  20. Tsumura T, Sogabe K, Toyoda M (2009) Preparation of SrTiO3-supported TiO2 photocatalyst. Mater Sci Eng B-Adv 157(1–3):113–115

    Article  CAS  Google Scholar 

  21. Hou C, Fan G, Xie X, Zhang X, Sun X, Zhang Y, Fan R (2021) TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies. J Alloy Compd 855:157499

    Article  CAS  Google Scholar 

  22. Liu X, Long P, Sun Z, Yi Z (2016) Optical, electrical and photoelectric properties of layered-perovskite ferroelectric Bi2WO6 crystals. J Mater Chem C 4(32):7563–7570

    Article  CAS  Google Scholar 

  23. Jung MH, Ko KC, Lee JY (2014) Single Crystalline-like TiO2 nanotube fabrication with dominant (001) facets using poly (vinylpyrrolidone) for high efficiency solar cells. J Phys Chem C 118(31):17306–17317

    Article  CAS  Google Scholar 

  24. Chen R, Bao J, Yan Z, Huang X, Yun J, Zeng X, Chen J (2019) Preparation of transparent dispersions with monodispersed Ag nanoparticles for TiO2 photoelectrode materials with excellent photovoltaic performance. Eng Sci 8(2):54–65

    Google Scholar 

  25. Mechiakh R, Sedrine NB, Naceur JB, Chtourou R (2011) Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol–gel dip-coating. Surf Coat Tech 206(2–3):243–249

    Article  CAS  Google Scholar 

  26. Naceur JB, Gaidi M, Bousbih F, Mechiakh R, Chtourou R (2012) Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol–gel technique. Curr Appl Phys 12(2):422–428

    Article  Google Scholar 

  27. Sheikhnejad-Bishe O, Zhao F, Rajabtabar-Darvishi A, Khodadad E, Huang Y (2014) Precursor and reaction time effects in evaluation of photocatalytic properties of TiO2 nanoparticles synthesized via low temperature. Int J Electrochem Sci 9:3068–3077

    Google Scholar 

  28. Cao T, Li Y, Wang C, Shao C, Liu Y (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6):2946–2952

    Article  CAS  Google Scholar 

  29. Yoon S, Maegli AE, Karvonen L, Matam SK, Shkabko A, Riegg S, Weidenkaff A (2013) Bandgap tuning in SrTi(N, O, F)3 by anionic-lattice variation. J Solid State Chem 206:226–232

    Article  CAS  Google Scholar 

  30. Gabriela BS, Bravin B, Carlos MP, Caue R (2011) Facile synthesis of N-doped TiO2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties. Aool Catal B-Environ 106(3–4):287–294

    Google Scholar 

  31. Hou C, Hou Y, Fan Y, Zhai Y, Wang Y, Sun Z, Wang J (2018) Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A 6(16):6967–6976

    Article  CAS  Google Scholar 

  32. Yuyu B, Zhuoyuan C (2018) Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite. J. Alloy, Compd

    Google Scholar 

  33. Mai R, Wu X, Jiang Y, Meng Y, Liu B, Hu X, Gao J (2019) An efficient multi-functional material based on polyether-substituted indolocarbazole for perovskite solar cells and solution-processed non-doped OLEDs. J Mater Chem A 7(4):1539–1547

    Article  CAS  Google Scholar 

  34. Zhao Y, Li Y, Wang CW, Wang J, Wang XQ, Pan ZW, Zhou F (2013) Carbon-doped anatase TiO2 nanotube array/glass and its enhanced photocatalytic activity under solar light. Solid State Sci 15:53–59

    Article  CAS  Google Scholar 

  35. Yan JH, Zhu YR, Tang YG, Zheng SQ (2009) Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation. J Alloy Compd 472(1–2):429–433

    Article  CAS  Google Scholar 

  36. Lai CW, Sreekantan S (2012) Dimensional control of TiO2 nanotube arrays with H2O2 content for high photoelectrochemical water splitting performance. Micro Nano Lett 7(5):443–447

    Article  CAS  Google Scholar 

  37. Dai G, Yu J, Liu G (2011) Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays. J Phys Chem C 115(15):7339–7346

    Article  CAS  Google Scholar 

  38. Guo E, Yin L (2015) Tailored SrTiO3/TiO2 heterostructures for dye-sensitized solar cells with enhanced photoelectric conversion performance. J Mater Chem A 3 

  39. Yu L, Wang Z, Shi L, Yuan S, Zhao Y, Fang J, Deng W (2012) Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Appl Catal B-Environ 113:318–325

    Article  CAS  Google Scholar 

  40. Zheng D, Lv M, Wang S, Guo W, Sun L, Lin C (2012) A combined TiO2 structure with nanotubes and nanoparticles for improving photoconversion efficiency in dye-sensitized solar cells. Electrochim Acta 83:155–159

    Article  CAS  Google Scholar 

  41. Chang SJ, Chen SY, Chen PW, Huang SJ, Tseng YC (2019) Pulse-driven nonvolatile perovskite memory with photovoltaic read-out characteristics. ACS Appl Mater Inter 11(37):33803–33810

    Article  CAS  Google Scholar 

  42. Zhao L, Lu Z, Zhang F, Tian G, Song X, Li Z (2015) Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates. Sci Rep 5:9680

    Article  CAS  Google Scholar 

  43. Kennedy RJ, Stampe PA (2003) The influence of lattice mismatch and film thickness on the growth of TiO2 on LaAlO3 and SrTiO3 substrates. J Cryst Growth 252(1–3):333–342

    Article  CAS  Google Scholar 

  44. Diamant Y, Chen SG, Melamed O, Zaban A (2003) Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J Phys Chem B 107(9):1977–1981

    Article  CAS  Google Scholar 

  45. Wang L, Wang Z, Wang D, Shi X, Song H, Gao X (2014) The photocatalysis and mechanism of new SrTiO3/TiO2. Solid State Sci 31:85–90

    Article  CAS  Google Scholar 

  46. Huang LF, Koocher NZ, Gu M, Rondinelli JM (2018) Structure dependent phase stability and thermal expansion of Ruddlesden-Popper strontium titanates. Chem Mater 30

  47. Guan L, Li M, Li X, Feng L, Teng F, Liu B (2015) Electronic and dielectric properties of Ruddlesden-Popper type and magnéli type SrTiO3. Comp Mater Sci 96:223–228

    Article  CAS  Google Scholar 

  48. Reshak AH, Auluck S, Kityk I (2008) Electronic band structure and optical properties of Srn+1TinO3n+1 Ruddlesden-Popper homologous series. Jpn J Appl Phys 47(7R):5516

    Article  CAS  Google Scholar 

  49. Weng H, Kawazoe Y, Wan X, Dong J (2006) Electronic structure and optical properties of layered perovskites Sr2MO4 (M= Ti, V, Cr, and Mn): An ab initio study. Phys Rev B 74(20):205112–205120

    Article  CAS  Google Scholar 

  50. Li G, Guo-Qi J, Jin-Gai Z, Qing-Bo L, Wei W, Jian-Xin G, Xiu-Hong D (2013) First principle study on the influence of Sr/Ti ratio on the atomic structure and dislocation behavior of SrTiO3. Chin Phys Lett 30(4):047703

    Article  Google Scholar 

  51. Birol T, Benedek NA, Fennie CJ (2011) Interface control of emergent ferroic order in Ruddlesden-Popper Srn+1TinO3n+1. Phys Rev Lett 107(25):257602–257606

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11574057 and 51604087), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515012607), and the Science and Technology Program of Guangdong Province of China (Grant No. 2017A010104022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Gui Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1442 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tang, XG., Liu, QX. et al. Enhancement of the photoelectric properties of composite oxide TiO2-SrTiO3 thin films. Adv Compos Hybrid Mater 5, 1557–1565 (2022). https://doi.org/10.1007/s42114-021-00237-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00237-w

Keywords

Navigation