Skip to main content
Log in

Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A series of sandwich hybrid metal (steel, aluminum) + carbon, glass fiber reinforcement plastic composite (CFRP, GFRP) + metal composite sheet was developed to achieve the lightweight design purpose. It was found that the CFPR and GFRP played an important role in reducing the density of the composite sheet up to 30%, as well as maximum 30% improvement of the specific strength. The bridging mechanism found in development of hybrid sheet attributed from CF and GF delayed the composite sheet fracture, which shall improve the safety for automotive components. This result offers new insights on design and processing of metal + fiber reinforcement plastic composite sheet for lightweight design.

Graphical abstract

The developed sandwich hybrid sheet with metallic sheet surface and plastic/composite sheet mid-layer to provide lightweight application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asadi A, Miller M, Singh AV, Moon RJ, Kalaitzidou K (2017) Lightweight sheet molding compound (SMC) composites containing cellulose nanocrystals. Compos Struct 160:211–219

    Article  Google Scholar 

  2. Razi F, Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Preparation, characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via a new simple hydrothermal approach. J Mol Liq 225:645–651

    Article  CAS  Google Scholar 

  3. Mousavi-Kamazani M, Zinatloo-Ajabshir S, Ghodrati M (2020) One-step sonochemical synthesis of Zn (OH) 2/ZnV 3 O 8 nanostructures as a potent material in electrochemical hydrogen storage. J Mater Sci: Mater Electron 31(20):17332–17338

    Google Scholar 

  4. Zinatloo-Ajabshir S, Ghasemian N, Mousavi-Kamazani M, Salavati-Niasari M (2020) Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason Sonochem 71:105376

    Article  Google Scholar 

  5. Heidari-Asil SA, Zinatloo-Ajabshir S, Amiri O, Salavati-Niasari M (2020) Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int J Hydrogen Energy 45(43):22761–22774

    Article  CAS  Google Scholar 

  6. Morassaei MS, Zinatloo-Ajabshir S, Salavati-Niasari M (2016a) Simple salt-assisted combustion synthesis of Nd 2 Sn 2 O 7–SnO 2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J Mater Sci: Mater Electron 27(11):11698–11706

    CAS  Google Scholar 

  7. Zinatloo-Ajabshir S, Salavati-Niasari M (2019) Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos B Eng 174:106930

    Article  CAS  Google Scholar 

  8. Asnafi N, Langstedt G, Andersson C-H, Östergren N, Håkansson T (2000) A new lightweight metal-composite-metal panel for applications in the automotive and other industries. Thin-Walled Struct 36(4):289–310

    Article  Google Scholar 

  9. Xiong J, Ghosh R, Ma L, Ebrahimi H, Hamouda AMS, Vaziri A, Wu L (2014) Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores. Compos Struct 116:793–804

    Article  Google Scholar 

  10. Zinatloo-Ajabshir S, Baladi M, Amiri O, Salavati-Niasari M (2020) Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Sep Purif Technol 117062

  11. Zinatloo-Ajabshir S, Salehi Z, Salavati-Niasari M (2018) Green synthesis and characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high visible-light photocatalytic activity of organic contaminants. J Alloy Compd 763:314–321

    Article  CAS  Google Scholar 

  12. Mortazavi-Derazkola S, Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv Powder Technol 28(3):747–754

    Article  CAS  Google Scholar 

  13. Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2019) Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos B Eng 167:643–653

    Article  CAS  Google Scholar 

  14. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2017) Simple sonochemical synthesis of Ho2O3-SiO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant. Ultrason Sonochem 39:452–460

    Article  CAS  Google Scholar 

  15. Morassaei MS, Zinatloo-Ajabshir S, Salavati-Niasari M (2016b) New facile synthesis, structural and photocatalytic studies of NdOCl-Nd2Sn2O7-SnO2 nanocomposites. J Mol Liq 220:902–909

    Article  CAS  Google Scholar 

  16. Li Y-L, Shen M-Y, Chen W-J, Chiang C-L, Yip M-C (2012) Tensile creep study and mechanical properties of carbon fiber nano-composites. J Polym Res 19(7):9893

    Article  Google Scholar 

  17. Saleem A, Frormann L, Iqbal A (2007) Mechanical, thermal and electrical resistivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J Polym Res 14(2):121–127

    Article  CAS  Google Scholar 

  18. Schijve J, Wiltink F, Van Bodegom V (1994) Flight-simulation fatigue tests on notched specimens of fiber-metal laminates. LRV-10, TU Delft

  19. Immarigeon J, Holt R, Koul A, Zhao L, Wallace W, Beddoes J (1995) Lightweight materials for aircraft applications. Mater Charact 35(1):41–67

    Article  CAS  Google Scholar 

  20. Guancheng LIYK (2003) FEM simulation of bending formability for laminate steel/resin/steel lightweight composite sheet. J Mater Sci Technol 19(04):324–326

    Google Scholar 

  21. Borazghi H (2008) Process and machine for producing lightweight thermoplastic composite products in a continuous manner. Canadian Patent,

  22. Gao X, Ebeling TA, Hynes B, Davis S, Wood T, Dictus JTP (2009) Lightweight glass fiber reinforced thermoplastic material. United States Patent,

  23. Heggemann T, Homberg W (2019) Deep drawing of fiber metal laminates for automotive lightweight structures. Compos Struct 216:53–57

    Article  Google Scholar 

  24. Mallick PK (2010) Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures. In: Mallick PK (ed) Materials. Woodhead Publishing, Design and Manufacturing for Lightweight Vehicles, pp 174–207

    Google Scholar 

  25. Anderson D (2004) Lightweight panel construction. United States Patent.

  26. Tuschy JOP, Dahm AJV (2000) Composite-prelaminated closure tape system. United States Patent.

  27. Qi G, Ma L (2018) Experimental investigation of composite pyramidal truss core sandwich panels with lightweight inserts. Compos Struct 187:336–343

    Article  Google Scholar 

  28. Grujicic M, Sellappan V, Omar MA, Seyr N, Obieglo A, Erdmann M, Holzleitner J (2008) An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J Mater Process Technol 197(1):363–373

    Article  CAS  Google Scholar 

  29. Reyes G, Cantwell W (1998) Interfacial fracture in fibre-metal laminates based on glass fibre reinforced polypropylene. Adv Compos Lett 7(4):096369359800700401

    Article  Google Scholar 

  30. Grujicic M, Sellappan V, Arakere G, Seyr N, Erdmann M (2008) Computational feasibility analysis of direct-adhesion polymer-to-metal hybrid technology for load-bearing body-in-white structural components. J Mater Process Technol 195(1–3):282–298

    Article  CAS  Google Scholar 

  31. Giusti R, Lucchetta G (2014) Modeling the adhesion bonding mechanism in overmolding hybrid structural parts for lightweight applications. In: Key Engineering Materials. Trans Tech Publ, pp 915–921

  32. Dear J, Lee H, Brown S (2005) Impact damage processes in composite sheet and sandwich honeycomb materials. Int J Impact Eng 32(1–4):130–154

    Article  Google Scholar 

  33. Lee MS, Kim SJ, Seo HY, Kang C-G (2019) Investigation of formability and fiber orientation in the square deep drawing process with steel/CFRP hybrid composites. International Journal of Precision Engineering and Manufacturing 20 (11)

  34. Yanagimoto J, Ikeuchi K (2012) Sheet forming process of carbon fiber reinforced plastics for lightweight parts. CIRP Ann 61(1):247–250

    Article  Google Scholar 

  35. Pedersen KO, Westermann I, Furu T, Børvik T, Hopperstad OS (2015) Influence of microstructure on work-hardening and ductile fracture of aluminium alloys. Mater Des 70:31–44

    Article  CAS  Google Scholar 

  36. Kim S-J, Park J, Babu J, Seo HY, Kang CG (2020) Effect of interface bonding process on bending strength in CFRP/metal hybrid composites. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012102

  37. Leung CKY, Li VC (1992) Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites. J Mech Phys Solids 40(6):1333–1362

    Article  Google Scholar 

  38. Liu W-H, Zhang L-W, Liew KM (2020) Modeling of crack bridging and failure in heterogeneous composite materials: a damage-plastic multiphase model. J Mech Phys Solids 143:104072

    Article  Google Scholar 

  39. Lin C, Kao P (1995) Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminum laminates. Mater Sci Eng, A 190(1–2):65–73

    Article  Google Scholar 

  40. Shalaby RM, Kamal M, Ali EA, Gumaan MS (2017) Microstructural and mechanical characterization of melt spun process Sn-3.5 Ag and Sn-3.5 Ag-xCu lead-free solders for low cost electronic assembly. Mater Sci Eng, A 690:446–452

    Article  Google Scholar 

  41. Gumaan MS Chromium improvements on the mechanical performance of a rapidly solidified eutectic Sn–Ag alloy.

Download references

Funding

The Innovation and Technology Fund (ITF) financially supported this work under grant no. ITP/071/18AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haokun Yang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Ng, B.C., Yu, H.C. et al. Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet. Adv Compos Hybrid Mater 5, 83–90 (2022). https://doi.org/10.1007/s42114-021-00213-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00213-4

Keywords

Navigation