Skip to main content
Log in

Synthesis and characterization of PVP/PbI2 nanocomposites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The composite organic/inorganic sols and composites containing PbI2 nanoparticles have been synthesized and studied by spectroscopic methods and TEM analysis. Prepared sols and nanocomposites contain small PbI2 nanoparticles. TEM analysis and optical spectroscopy showed that prepared PbI2 nanoparticles have size ~ 4 nm. The shift of the main absorption band relative to the bulk material of PbI2 indicates the quantum confinement effect. Obtained composites are characterized high transparency in visible spectral range and the absence of their big aggregates. Prepared sols and coatings showed luminescence dependence on the excitation wavelength in a wide range of VIS spectrum 570–610 nm due to active radiative recombination of excitons associated with the capture of excitation at the surface centers where Pb ions are located. An experimental dependence of the luminescence lifetime on the size of the synthesized nanoparticles was obtained. The growth of PbI2 nanoparticles size from 3.9 to 4.4 nm shifts the emission band into the long-wave region and reduces the luminescence lifetime from 3.5 to 2.3 ns. PbI2/PVP ratio and the size of PbI2 nanocrystals play the important role in spectral and luminescence properties of these nanocomposites.

PbI2/PVP ratio and the size of PbI2 nanocrystals play the important role in spectral and luminescence properties of the nanocomposites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Azib T, Labiadh H, Gaceur M, Montero D, Ammar S, Smiri L, Ben Chaabane T (2012) Structural, microstructural and optical characterization of polyol-mediated ZnS/PVP nanocomposite powders and films. J Mater Environ Sci 3(6):1147–1152

    CAS  Google Scholar 

  2. Preda N, Mihut L, Baltog I, Velula T, Teodorescu V (2006) Optical properties of low-dimensional PbI2 particles embedded in polyacrylamide matrix. J Optoelectron Adv Mater 8(3):909–913

    CAS  Google Scholar 

  3. Goto T, Saito S (1996) Optical properties of ultrathin PbI2microcrystallite in polymer. J Lumin 70(1–6):435–447

    Article  CAS  Google Scholar 

  4. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL (2000) Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl Phys Lett 76(20):2901–2903

    Article  CAS  Google Scholar 

  5. Evstropiev SK, Dukelskii KV, Kislyakov IM, Evstropyev KS, Gatchin YA (2016) Immersion film-forming compositions based on high-molecular polyvinylpyrrolidone. Polym Adv Technol 27:1258–1260. https://doi.org/10.1002/pat.3760

    Article  CAS  Google Scholar 

  6. Vempati S, Ertas Y, Uyer T (2013) Sensitive surface states and their passivation mechanism in CdS quantum dots. J Phys Chem 117:21609–21618. https://doi.org/10.1021/jp408160h

    Article  CAS  Google Scholar 

  7. Evstropiev SK, Kislyakov IM, Bagrov IV, Belousova IM (2016) Stabilization of PbS quantum dots by high molecular polyvinylpyrrolidone. Polym Adv Technol 27:314–317. https://doi.org/10.1002/pat.3642

    Article  CAS  Google Scholar 

  8. Li B, Zhang Y, Fu L, Yu T, Zhou S, Hang L, Yin L (2018) Surface passivation engineering strategy to fully-inorganic cubic CsPbI3perovskites for high-performance solar cells. Nat Commun 9:1076. https://doi.org/10.1038/s41467-018-03169-0

    Article  CAS  Google Scholar 

  9. Bagrov IV, Belousova IM, Evstropiev SK, Kislyakov IM (2015) Some features of luminescent properties of PbS suspensions, stabilized by high-molecular polyvinylpyrrolidone.-Polym. Adv Technol 26(9):1097–1101. https://doi.org/10.1002/pat.3539

    Article  CAS  Google Scholar 

  10. Artemyev MV, Yablonski GP, Rakovich YP (1995) Luminescence spectra of quantum-sized CdS and PbI2 particles in static electric field. Acta Polonica A 87(2):523–527

    Article  CAS  Google Scholar 

  11. Liu H, Zhang B, Shi H, Tang Y, Jiao K, Fu X (2008) Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. J Mater Chem 18:2573–2580

    Article  CAS  Google Scholar 

  12. Mazumdar N, Chikindas ML, Ulrich K (2010) Slow release polymer-iodine tablets for disinfection of untreated surface water. J Appl Polym Sci 117:329–334

    CAS  Google Scholar 

  13. Ushakova EV, Litvin AP, Parfenov PS, Fedorov AV, Artemyev M, Prudnikau AV, Rukhlenko ID, Baranov AV (2012) Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution. ACS Nano 6(10):8913–8921

    Article  CAS  Google Scholar 

  14. Kulagina AS, Evstrop’ev SK, Rosanov NN, Vlasov VV (2018) Non-linear optical properties of CdS/ZnS quantum dots in a high-molecular polyvinylpyrrolidone matrix. Semiconductors 52(8):997–1003

    Article  CAS  Google Scholar 

  15. Artemyev MV, Rakovich YP, Yablonski GP (1997) Effect of dc electric field on photoluminescence from quantum-confined PbI2 nanocrystals. J Cryst Growth 171(4):447–452

    Article  CAS  Google Scholar 

  16. Tachikawa S, Noguchi A, Tsuge T, Hara M, Odawarra O, Wada H (2011) Optical properties of ZnO nanoparticles capped with polymers. Materials 4:1132–1143. https://doi.org/10.3390/ma4061132

    Article  CAS  Google Scholar 

  17. Ahuja R, Arwin H, Ferreira da Silva A, Persson C, Osorio-Guillén JM, Souza de Almeida J, Moyses Araujo C, Veje N, Veissid E, An CY, Pepe I, Johansson B (2002) Electronic and optical properties of lead iodide. J Appl Phys 92(12):7219–7224

    Article  CAS  Google Scholar 

  18. Shah KS, Olschner F, Moy LP, Bennett P, Misra M, Zhang J, Squillante MR, Lund JC (1996) Lead iodide X-ray detection systems. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment 380(1–2):266–270

    Article  CAS  Google Scholar 

  19. Zhu G, Hojamberdiev M, Liua P, Peng J, Zhou J, Bian X, Huang X (2011) The effect of synthesis parameters on the formation of PbI2 particles under DTAB-assisted hydrothermal process. Mater Chem Phys 131:64–71

    Article  CAS  Google Scholar 

  20. Schlüter IC, Schlüter M (1974) Electronic structure and optical properties of PbI2. Phys Rev B 9:1652–1663

    Article  Google Scholar 

  21. Shkir M, Yahia IS, Ganesh V, Bitla Y, Ashra IM, Kaushik A, AlFaify S (2018) A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Sci Rep 8:13806

    Article  Google Scholar 

  22. Shkir M, AlFaify S, Yahia IS, Hamdy MS, Ganesh V, Algatrni H (2017) Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications. J Nanopart Res 19:238

  23. Zhang J, Song T, Zhang Z, Ding K, Huang F, Baoquan S (2015) Layered ultrathin PbI2 single crystals for high sensitivity flexible photodetectors. J Mater Chem 3(15):4402–4406

    CAS  Google Scholar 

  24. Li-Min C, Ting-Yu T, Yueh-Ying C, Lin P-Y, Yaw-Shyan F (2015) Fabrication of CH3NH3PbI3/PVP composite fibers via electrospinning and deposition. Materials 8(8):5467–5478. https://doi.org/10.3390/ma8085256

    Article  CAS  Google Scholar 

  25. Kaviyarasu K, Sajan D, Selvakumar MS, Augustine Thomas S, Prem Anand D (2012) A facile hydrothermal route to synthesize novel PbI2 nanorods. J Phys Chem Solids 73(11):1396–1400

    Article  CAS  Google Scholar 

  26. Zhu G, Liu P, Hojamberdiev M, Zhou J-P, Huang X, Feng B, Yang R (2010) Controllable synthesis of PbI2 nanocrystals via a surfactant-assisted hydrothermal route. Appl Phys A: Mater Sci & Processing 98:299–304

    Article  CAS  Google Scholar 

  27. Gulia V, Vedeshwar AS (2007) Optical properties of PbI2 films: quantum confinement and residual stress effect. Phys Rew B 75:045409

    Article  Google Scholar 

  28. Baibarac M, Preda N, Mihut L, Baltog I, Lefrant S, Mevellec JY (2004) On the optical properties of micro- and nanometric size PbI2 particles. J Phys Condens Matter 16:2345–2356

    Article  CAS  Google Scholar 

  29. Sengupta A, Jiang B, Mandal KC, Zhang JZ (1999) Ultrafast electronic relaxation dynamics in PbI2 semiconductor colloidal nanoparticles: a femtosecond transient absorption study. J Phys Chem B 103:3128–3137

    Article  CAS  Google Scholar 

  30. Sandroff CJ, Kelty SP, Hwang DM (1986) Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures. J Chem Phys 85(9):5337–5340

    Article  CAS  Google Scholar 

  31. Soshnikov IP, Gorbenko OM, Golubok AO, Ledentsov NN (2001) Composition analysis of coherent nanoinsertions of solid solutions on the basis of high-resolution electron micrographs. Semiconductors 35:347–352

    Article  CAS  Google Scholar 

  32. Goebbert DJ, Garand E, Wende T, Bergmann R, Meijer G, Asmis KR, Neumark DM (2009) Infrared spectroscopy of the microhydrated nitrate ions NO3-(H2O)1-6. J Phys Chem A 113(75):7584–7592

    Article  CAS  Google Scholar 

  33. Soltani N, Saion E, Rezaee K, Bahmanrokh G, Drummen GP, Bahrami A, Hussein MZ (2012) Influence of the polyvinylpyrrolidone concentration on particle size and dispersion of ZnO nanoparticles synthesized by microwave irradiation. Int J Mol Sci 13(10):12412–12427. https://doi.org/10.3390/ijms131012412

    Article  CAS  Google Scholar 

  34. Brewer SH, Tang Y, Vu DM, Gnakaran S, Raleigh DP, Brian Dyer R (2012) Temperature dependence of water interactions with the amide carbonyls of α-helices. Biochem. 51(26):5293–5299. https://doi.org/10.1021/bi3006434

    Article  CAS  Google Scholar 

  35. Anasuya KV, Veeraiah MK, Hemalatha P, Manju M (2014) Synthesis and characterization of poly(vinylpyrrolidone) – nickel (II) complexes. IOSR Journal of Applied Chemistry 7(8):61–66 www.iosrjournals.org

    Article  CAS  Google Scholar 

  36. Anasuya KV, Veeraiah MK, Prasannakumar S, Hemalatha P, Manju M (2014) Synthesis and characterization of poly(vinylpyrrolidon) - cobalt (II) complexes. Indian J Adv in Chem Sci 2:12–15

    CAS  Google Scholar 

  37. Lifshitz E, Yassen M, Bykov L, Dag I (1996) Continuous photoluminescence, time resolved photoluminescence and optically detected magnetic resonance measurements of PbI2 nanometer-sized particles embedded in SiO2 films. J Lumin 70:421–434

    Article  CAS  Google Scholar 

  38. Akopyan IK, Volkova ON, Novikov BV (1997) Size-quantization effects in the PbI2 and HgI2 nanocrystals. Phys Solid State 39(3):407–411

    Article  Google Scholar 

  39. Mallik K, Dhami TS (1998) Optical absorption spectra of lead iodide nanoclusters. Phys Rev B 58:13055

    Article  CAS  Google Scholar 

  40. Anthony JB, Brothers AD (1973) Effect of temperature and hydrostatic pressure on the exciton spectrum of lead iodide. Phys Rev B 7:1539

    Article  CAS  Google Scholar 

  41. Mu R, Tung YS, Ueda A, Henderson DO (1996) Chemical and size characterization of layered lead iodide quantum dots via optical spectroscopy and atomic force microscopy. J Phys Chem 100(51):19927–19932

    Article  CAS  Google Scholar 

  42. Preda N, Mihut L, Baibarac M, Baltog I, Lefrant S (2006) A distinctive signature in the Raman and photoluminescence spectra of intercalated PbI2. J Phys: Condensed Matt 18(39):8899–8912

    CAS  Google Scholar 

  43. Jain SM, Philippe B, Johansson EMJ, Park B-W, Rensmo H, Edvinsson T, Boschloo G (2016) Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase. J Mater Chem A 4:2630–2642

    Article  CAS  Google Scholar 

  44. Ushakova EV, Artemyev MV, Muhina MV, Parfenov PS, Cherevkov SA, Baranov AV, Fedorov AV (2010) Investigation of the size dependent optical properties of PbS quantum dots. Proc.14th Int. Conf. “Laser Optics 2010”, St.Petersburg, Russia, June 28 - July 02, 2010. – SPb: RIC GUAP. 2010. Р. ThR6-p11

  45. Moon BC, Park JH, Lee DK, Tsvetkov N, Ock I, Choi KM, Kang JK (2017) Broadband light absorption and efficient charge separation using a light scattering layer with mixed cavities for high-performance perovskite cellswith stability. DOI: https://doi.org/10.1002/smll.201700418

    Article  Google Scholar 

  46. Baer N, Gies C, Wiersig J, Jahnke (2006) Luminescence of a semiconductor quantum dot system. The Eur Phys J B 50(3):411–418

    Article  CAS  Google Scholar 

  47. De Mello DC, Bode M, Meijerink A (2006) Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys Rev B 74(8):085320

    Article  Google Scholar 

  48. Danilov VV, Panfutova AS, Khrebtov AI, Titova TS (2015) Specific features of resonant nonlinear absorption in colloidal solutions of CdSe/ZnS quantum dots. Opt Spectrosc 118(1):94–98

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly (Evstropiev S.K.) supported by the Russian Scientific Fund (Project 19-19-00596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Evstropiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstropiev, S.K., Kulagina, A.S., Saratovskii, A.S. et al. Synthesis and characterization of PVP/PbI2 nanocomposites. Adv Compos Hybrid Mater 3, 49–57 (2020). https://doi.org/10.1007/s42114-019-00132-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00132-5

Keywords

Navigation