Skip to main content
Log in

A review on synthesis and application of solvent-free nanofluids

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Nanoparticles have a lot of unique properties because of their unique surface and volume characters, and they have been successfully applied in various fields. The aggregation of the nanoparticles is an inevitable question. To extend the application of nanoparticles, solvent-free nanofluids or liquid-like nanoparticles with a core coated with flexible organic chains had been established by researchers at the beginning of the twenty-first century. Possessing unique properties and functionalities, solvent-free nanofluids can prevent the aggregation of nanoparticles. Besides, they could provide a new platform for common nanoparticles on functionalization and application. This article reviews the development and tendency of solvent-free nanofluids, including synthesis methods and promising applications of different kinds of solvent-free nanofluids. The approaches for synthesis of solvent-free nanofluids with different cores, corona, and canopy will be presented. Applications of these solvent-free nanofluids in a variety of areas comprising gas capture and separation, polymer modification and reinforcement, ionic electrolytes, luminescent materials, and decolorization are also discussed.

This article has reviewed the synthesis of various solvent-free nanofluids, and introduced their application in a variety of different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Gaol F, Shrivastava K, Akhtar J (2015) Recent trends in physics of material science and technology. Springer 12(3-4):315–316

    Google Scholar 

  2. Ayyub P, Multani M, Barma M, Palkar VR, Vijayaraghavan R (2000) Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. J Phys C Solid State Phys 21(21):2229–2245

    Google Scholar 

  3. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556

    CAS  Google Scholar 

  4. Halas NJ, Averitt RD, Westcott SL (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(16):1824–1832

    Google Scholar 

  5. Che G, Lakshmi BB, Martin CR, Fisher ER (1999) Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15(3):750–758

    CAS  Google Scholar 

  6. Villoria RGD, Miravete A (2007) Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater 55(9):3025–3031

    Google Scholar 

  7. Bourlinos AB, Herrera RA, Chalkias N, Jiang DD, Zhang Q, Archer LA, Giannelis EP (2010) Surface-functionalized nanoparticles with liquid-like behavior. Adv Mater 17(2):234–237

    Google Scholar 

  8. Bourlinos AB, Chowdhury SR, Jiang DD, Zhang Q (2005) Weakly solvated PEG-functionalized silica nanoparticles with liquid-like behavior. J Mater Sci 40(18):5095–5097

    CAS  Google Scholar 

  9. Bourlinos AB, Ray Chowdhury S, Herrera R, Jiang DD, Zhang Q, Archer LA, Giannelis EP (2010) Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv Funct Mater 15(8):1285–1290

    Google Scholar 

  10. Bourlinos AB, Giannelis EP, Zhang Q, Archer LA, Floudas G, Fytas G (2006) Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components. Eur Phys J E Soft Matter 20(1):109–117

    CAS  Google Scholar 

  11. Lin KY, Park AH (2011) Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials. Environ Sci Technol 45(15):6633–6639

    CAS  Google Scholar 

  12. Moganty SS, Srivastava S, Lu Y, Schaefer JL, Rizvi SA, Archer LA (2012) Ionic liquid-tethered nanoparticle suspensions: a novel class of ionogels. Chem Mater 24(7):1386–1392

    CAS  Google Scholar 

  13. Zhang J, Chai S, Qiao Z, Mahurin SM, Chen J, Fang Y, Wan S, Nelson K, Zhang P, Dai S (2015) Porous liquids: a promising class of media for gas separation. Angew Chem Int Ed Eng 54(3):932–936

    CAS  Google Scholar 

  14. Bai H, Zheng Y, Li P, Zhang A (2015) Synthesis of liquid-like trisilanol isobutyl-POSS NOHM and its application in capturing CO2. Chem Res Chin Univ 31(3):484–488

    CAS  Google Scholar 

  15. Tsuyoshi M, Takashi N, Hill JP, Masahiro F, Katsuhiko A (2010) Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. J Am Chem Soc 37(49):10384–10385

    Google Scholar 

  16. Lei Y, Xiong C, Dong L, Guo H, Su X, Yao J, You Y, Tian D, Shang X (2007) Ionic liquid of ultralong carbon nanotubes. Small 3(11):1889–1893

    CAS  Google Scholar 

  17. Lei Y, Xiong C, Guo H, Yao J, Dong L, Su X (2008) Controlled viscoelastic carbon nanotube fluids. J Am Chem Soc 130(11):3256

    CAS  Google Scholar 

  18. Zhang J, Zheng Y, Yu P, Mo S, Wang R (2009) Modified carbon nanotubes with liquid-like behavior at 45 °C. Carbon 47(12):2776–2781

    CAS  Google Scholar 

  19. Zhang J, Zheng Y, Yu P, Mo S, Wang R (2009) The synthesis of functionalized carbon nanotubes by hyperbranched poly(amine-ester) with liquid-like behavior at room temperature. Polymer 50(13):2953–2957

    CAS  Google Scholar 

  20. Tang Z, Zhang L, Zeng C, Lin T, Guo B (2012) General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter 8(35):9214

    CAS  Google Scholar 

  21. Li Q, Dong L, Liu Y, Xie H, Xiong C (2011) A carbon black derivative with liquid behavior. Carbon 49(3):1047–1051

    CAS  Google Scholar 

  22. Zheng Y, Zhang J, Lan L, Yu P, Rodriguez R, Herrera R, Wang D, Giannelis EP (2010) Preparation of solvent-free gold nanofluids with facile self-assembly technique. Chemphyschem 11(1):61–64

    CAS  Google Scholar 

  23. Moganty SS, Jayaprakash N, Nugent JL, Shen J, Archer LA (2010) Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew Chem 122(48):9344–9347

    Google Scholar 

  24. Tan Y, Zheng Y, Wang N, Zhang A (2012) Controlling the properties of solvent-free Fe3O4 nanofluids by corona structure. Nano-Micro Lett 4(4):208–214

    CAS  Google Scholar 

  25. Zheng Y, Zhang A, Tan Y, Wang N, Yu P (2013) Property-structure relationship of titania ionic liquid nanofluids. Soft Mater 11(3):315–320

    CAS  Google Scholar 

  26. Lin KYA, Yang H, Lee WD, Tsao KY (2015) A magnetic fluid based on covalent-bonded nanoparticle organic hybrid materials (NOHMs) and its decolorization application in water. J Mol Liq 204:50–59

    CAS  Google Scholar 

  27. Gu S, Gao X, Zhang Y (2015) Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids. Mater Chem Phys 149-150:587–593

    CAS  Google Scholar 

  28. Li Q, Dong L, Deng W, Zhu Q, Liu Y, Xiong C (2009) Solvent-free fluids based on rhombohedral nanoparticles of calcium carbonate. J Am Chem Soc 131(26):9148–9149

    CAS  Google Scholar 

  29. Zheng Y, Zhang J, Lan L, Yu P (2011) Sepiolite nanofluids with liquid-like behavior. Appl Surf Sci 257(14):6171–6174

    CAS  Google Scholar 

  30. Zhang J, Zheng Y, Lan L, Mo S, Yu P, Shi W, Wang R (2009) Direct synthesis of solvent-free multiwall carbon nanotubes/silica nonionic nanofluid hybrid material. ACS Nano 3(8):2185–2190

    CAS  Google Scholar 

  31. Li P, Zheng Y, Wu Y, Qu P, Yang R, Wang N, Li M (2014) A nanoscale liquid-like graphene@Fe3O4 hybrid with excellent amphiphilicity and electronic conductivity. New J Chem 38(10):5043–5051

    CAS  Google Scholar 

  32. Zheng Y, Yang R, Wu F, Li D, Wang N, Zhang A (2014) A functional liquid-like multiwalled carbon nanotube derivative in the absence of solvent and its application in nanocomposites. RSC Adv 4(57):30004–30012

    CAS  Google Scholar 

  33. Li P, Zheng Y, Li M, Fan W, Shi T, Wang Y, Zhang A, Wang J (2016) Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos A: Appl Sci Manuf 81:172–181

    CAS  Google Scholar 

  34. Bai H, Zheng Y, Wang T, Peng N (2016) Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity. J Mater Chem A 4(37):14392–14399

    CAS  Google Scholar 

  35. Bourlinos AB, Vasilios G, Vasilios T, Nikolaos B, Rafael H, Giannelis EP (2010) Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives. Small 2(10):1188–1191

    Google Scholar 

  36. Jespersen ML, Mirau PA, Meerwall EV, Vaia RA, Giannelis EP (2011) NMR Characterization of Canopy Dynamics in Nanoscale Ionic Materials. Acs Symposium 1077 (4):149-160

  37. Yu HY, Koch DL (2010) Structure of solvent-free nanoparticle-organic hybrid materials. Langmuir 26(22):16801–16811

    CAS  Google Scholar 

  38. Li P, Shi T, Yao D, Wang Y, Chao L, Zheng Y (2016) Covalent nanocrystals-decorated solvent-free graphene oxide liquids. Carbon 110:87–96

    CAS  Google Scholar 

  39. Bourlinos AB, Kannan R, Rafael H, Qiang Z, Archer LA, Giannelis EP (2004) A liquid derivative of 12-tungstophosphoric acid with unusually high conductivity. J Am Chem Soc 126(47):15358–15359

    CAS  Google Scholar 

  40. Vilatela JJ, Eder D (2012) Nanocarbon composites and hybrids in sustainability: a review. ChemSusChem 5(3):456–478

    CAS  Google Scholar 

  41. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37(6):781–819

    CAS  Google Scholar 

  42. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB (1998) Fullerene pipes. Science 280(5367):1253–1256

    CAS  Google Scholar 

  43. Warren SC, Banholzer MJ, Slaughter LS, Giannelis EP, Disalvo FJ, Wiesner UB (2006) Generalized route to metal nanoparticles with liquid behavior. J Am Chem Soc 128(37):12074–12075

    CAS  Google Scholar 

  44. Agrawal S, Kumar A, Frederick MJ, Ramanath G (2010) Hybrid microstructures from aligned carbon nanotubes and silica particles. Small 1(8-9):765–765

    Google Scholar 

  45. Guo S, Zhai J, Fang Y, Dong S, Wang E (2010) Nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere. Chem Asian J 3(7):1156–1162

    Google Scholar 

  46. Mousavand T, Takami S, Umetsu M, Ohara S, Adschiri T (2006) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. J Mater Sci 41:1445–1448

    CAS  Google Scholar 

  47. Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Pei L, Chan ASC (2003) Magnetic and conducting Fe3O4-ross-linked polyaniline nanoparticles with core-hell structure. Polymer 43(8):2179–2184

    Google Scholar 

  48. Silva EFD, Svendsen HF (2004) Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines. Ind Eng Chem Res 43(13):3413–3418

    Google Scholar 

  49. Gabrielsen J, Michelsen ML, Stenby EH, Kontogeorgis GM (2005) A model for estimating CO2 solubility in aqueous alkanolamines. Ind Eng Chem Res 44(9):3348–3354

    CAS  Google Scholar 

  50. George M, Weiss RG (2001) Chemically reversible organogels: aliphatic amines as “latent” gelators with carbon dioxide. J Am Chem Soc 123(42):10393–10394

    CAS  Google Scholar 

  51. George M, Weiss RG (2002) Chemically reversible organogels via “Latent” gelators. Aliphatic amines with carbon dioxide and their ammonium carbamates†. Langmuir 18:7124–7135

    CAS  Google Scholar 

  52. Qu P, Zheng Y, Yang R, Li D, Fan W, Lu Y (2015) Effect of canopy structures on CO2 capture capacity and properties of NONMs. Colloid Polym Sci 293(6):1623–1634

    CAS  Google Scholar 

  53. Li P, Yang R, Zheng Y, Qu P, Chen L (2015) Effect of polyether amine canopy structure on carbon dioxide uptake of solvent-free nanofluids based on multiwalled carbon nanotubes. Carbon 95:408–418

    CAS  Google Scholar 

  54. Yang R, Zheng Y, Li P, Bai H, Wang Y, Chen L (2016) Effects of acidification time of MWCNTs on carbon dioxide capture of liquid-like MWCNTs organic hybrid materials. RSC Adv 6(89):85970–85977

    CAS  Google Scholar 

  55. Li Q, Dong L, Li L, Su X, Xie H, Xiong C (2012) The effect of the addition of carbon nanotube fluids to a polymeric matrix to produce simultaneous reinforcement and plasticization. Carbon 50(5):2056–2060

    CAS  Google Scholar 

  56. Yang Y, Yu L, Peng R, Huang Y, He C, Liu H, Wang X, Xie X, Mai Y (2012) Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing. Nanotechnology 23(22):225701

    Google Scholar 

  57. Feng Q, Dong L, Huang J, Li Q, Fan Y, Xiong J, Xiong C (2010) Fluxible monodisperse quantum dots with efficient luminescence. Angew Chem Int Ed Eng 49(51):9943–9946

    CAS  Google Scholar 

  58. Sun L, Fang J, Reed JC, Estevez L, Bartnik AC, Hyun BY, Wise FW, Malliaras GG, Giannelis EP (2010) Lead-salt quantum-dot ionic liquids. Small 6(5):638–641

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yao, D. & Zheng, Y. A review on synthesis and application of solvent-free nanofluids. Adv Compos Hybrid Mater 2, 608–625 (2019). https://doi.org/10.1007/s42114-019-00125-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00125-4

Keywords

Navigation