Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review

Abstract

The high strength to weight ratio of carbon fiber has made it as an attractive energy-saving material over the conventional strength-bearing materials like steel. Realizing the trend, the high-weight steel is being progressively replaced by the low-weight and corrosion-resistant carbon fiber composites in many strength applications. The carbon fiber-reinforced polymer matrix composite (PMC) have thereby become forefront material in aerospace, automobile, sporting goods, and other applications which demand high strength and high modulus. Moreover, the gradual reduction of its cost curtsy to the extensive research in the field of carbon fiber technology in recent years has been opened its market in different construction applications. This review is the discussion of carbon fiber loaded a variety of polymer matrix composites where the structural importance of these composites has been emphasized. The objective of this discussion is to provide information on the whole spectrum of carbon fiber-based polymeric composites. It also includes brief discussion about preparation and properties of carbon fibers along with processing, fabrication, and structural applications of these carbon fiber-based polymer composites.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

CF:

Carbon fiber

GF:

Glass fiber

PMC:

Polymeric matrix composite

FRP:

Fiber-reinforced polymer composite

AF:

Aramid fibers

PAN:

Polyacrylonitrile

UHM:

Ultrahigh modulus

HM:

High modulus

IM:

Intermediate modulus

SHT:

Super high tensile strength

HIT:

High-heat treatment

IHT:

Intermediate-heat treatment

LHT:

Low-heat treatment

PES:

Polyethersulfone

PPS:

Polyphenyl sulfide

PEEK:

Polyetheretherketone

PEI:

Polyetherimide

PI:

Polyimide

RTM:

Resin transfer molding

EMI:

Electromagnetic interference

T g :

Glass transition temperature

PC:

Polycarbonate

PLA:

Polylactic acid

SEM:

Scanning electron microscope

STM:

Scanning tunneling microscope

References

  1. 1.

    Kong L, Liu H, Cao W, Xu L (2014) PAN fiber diameter effect on the structure of PAN-based carbon fibers. Fibers Polym 15(12):2480–2488

    Google Scholar 

  2. 2.

    Oroumei A, Naebe M (2017) Mechanical property optimization of wet-spun lignin/polyacrylonitrile carbon fiber precursor by response surface methodology. Fibers Polym 18(11):2079–2093

    Google Scholar 

  3. 3.

    Shirvanimoghaddam K, Hamim SU, Akbari MK, Fakhrhoseini SM, Khayyam H, Pakseresht AH, Ghasali E, Zabet M, Munir KS, Jia S (2017) Carbon fiber reinforced metal matrix composites: fabrication processes and properties. Compos Part A 92:70–96

    Google Scholar 

  4. 4.

    Dong C, Davies IJ (2018) Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-018-0034-5

  5. 5.

    Edison TA (1880) Electric lamp. U.S. Patent No. 223,898

  6. 6.

    Roger B (1960) Filamentary graphite and method for producing the same. Google Patents US Patent No 2,957,756

  7. 7.

    Sittig M (1980) Carbon and graphite fibers: manufacture and applications, vol 162. Noyes Publications, Saddle River

    Google Scholar 

  8. 8.

    Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Synthesis of graphite fibers and filaments. In: Graphite fibers and filaments. Springer, Berlin, pp 12–34

    Google Scholar 

  9. 9.

    Liu Y, Kumar S (2012) Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev 52(3):234–258

    Google Scholar 

  10. 10.

    Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press, Boca Raton

    Google Scholar 

  11. 11.

    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42(4):856–873

    Google Scholar 

  12. 12.

    Ran F, Yang X, Shao L (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv Compos Hybrid Mater 1:32–55

    Google Scholar 

  13. 13.

    Ko T-H, Liau S-C, Lin M-F (1992) Preparation of graphite fibres from a modified PAN precursor. J Mater Sci 27(22):6071–6078

    Google Scholar 

  14. 14.

    Hou C, Qu R, Liu J, Ying L, Wang C (2006) High-molecular-weight polyacrylonitrile by atom transfer radical polymerization. J Appl Polym Sci 100(4):3372–3376

    Google Scholar 

  15. 15.

    Sawai D, Fujii Y, Kanamoto T (2006) Development of oriented morphology and tensile properties upon superdawing of solution-spun fibers of ultra-high molecular weight poly (acrylonitrile). Polymer 47(12):4445–4453

    Google Scholar 

  16. 16.

    An N, Xu Q, Xu LH, Wu SZ (2006) Orientation structure and mechanical properties of polyacrylonitrile precursors. In: Adv Mater Res. Trans Tech Publ pp 383–386

  17. 17.

    Kabir M, Wang H, Lau K, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos Part B 43(7):2883–2892

    Google Scholar 

  18. 18.

    Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Google Scholar 

  19. 19.

    Gu H, Liu C, Zhu J, Gu J, Wujcik EK, Shao L, Wang N, Wei H, Scaffaro R, Zhang J (2018) Introducing advanced composites and hybrid materials. Adv Compos Hybrid Mater 1:1–5

    Google Scholar 

  20. 20.

    Ishida H, Kumar G (2013) Molecular characterization of composite interfaces, vol 27. Springer Science & Business Media, Berlin

    Google Scholar 

  21. 21.

    Hull D, Clyne T (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Google Scholar 

  22. 22.

    Vallittu PK (2015) High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater 31(1):1–7

    Google Scholar 

  23. 23.

    Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Marêché J (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53(10):6209

    Google Scholar 

  24. 24.

    Chung D (2000) Cement reinforced with short carbon fibers: a multifunctional material. Compos Part B 31(6–7):511–526

    Google Scholar 

  25. 25.

    Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-018-0022-9

  26. 26.

    Fitzer E, Geigl K-H, Hüttner W, Weiss R (1980) Chemical interactions between the carbon fibre surface and epoxy resins. Carbon 18(6):389–393

    Google Scholar 

  27. 27.

    Dvir H, Jopp J, Gottlieb M (2006) Estimation of polymer–surface interfacial interaction strength by a contact AFM technique. J Colloid Interface Sci 304(1):58–66

    Google Scholar 

  28. 28.

    Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J (2014) Carbon fiber surfaces and composite interphases. Compos Sci Technol 102:35–50

    Google Scholar 

  29. 29.

    Soutis C (2005) Carbon fiber reinforced plastics in aircraft construction. Mater Sci Eng A 412(1–2):171–176

    Google Scholar 

  30. 30.

    Chowdhury P, Sehitoglu H, Rateick R (2018) Damage tolerance of carbon-carbon composites in aerospace application. Carbon 126:382–393

    Google Scholar 

  31. 31.

    Baschnagel F, Härdi R, Triantafyllidis Z, Meier U, Terrasi GP (2018) Fatigue and durability of laminated carbon fibre reinforced polymer straps for bridge suspenders. Polymers 10(2):169

    Google Scholar 

  32. 32.

    Elanchezhian C, Ramnath BV, Ramakrishnan G, Raghavendra KS, Muralidharan M, Kishore V (2018) Review on metal matrix composites for marine applications. Mater Today 5(1):1211–1218

    Google Scholar 

  33. 33.

    Greenwood S (2018) Shafts with reinforcing layer for sporting goods and methods of manufacture. U.S. Patent. Application no. 15/639,654

  34. 34.

    Tong L, Mouritz AP, Bannister M (2002) 3D fibre reinforced polymer composites, 1st edn. Elsevier Science, Atlanta

    Google Scholar 

  35. 35.

    Liao G, Li Z, Cheng Y, Xu D, Zhu D, Jiang S, Guo J, Chen X, Xu G, Zhu Y (2018) Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater Des 139:283–292

    Google Scholar 

  36. 36.

    Chung D (2017) Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites. Mater Sci Eng R Rep 113:1–29

    Google Scholar 

  37. 37.

    Naqvi S, Prabhakara HM, Bramer E, Dierkes W, Akkerman R, Brem G (2018) A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour Conserv Recycl 136:118–129

    Google Scholar 

  38. 38.

    Pinheiro D, Longo O, Nascimento G, Couri G (2017) Use of composite materials in carbon Fiber for the recovery of small slab–calculation by analytical and computational methods. Int J Compos Mater 7(1):1–7

    Google Scholar 

  39. 39.

    Roberts T (2011) The carbon fibre industry worldwide 2011-2020, vol 6. Materials Technology Publications, Watford, p 29

    Google Scholar 

  40. 40.

    Wei H, Nagatsuka W, Lee H, Ohsawa I, Sumimoto K, Wan Y, Takahashi J (2018) Mechanical properties of carbon fiber paper reinforced thermoplastics using mixed discontinuous recycled carbon fibers. Adv Compos Mater 27(1):19–34

    Google Scholar 

  41. 41.

    Barbero EJ (2017) Introduction to composite materials design. CRC Press, Boca Raton

    Google Scholar 

  42. 42.

    Tang MM, Bacon R (1964) Carbonization of cellulose fibers—I. low temperature pyrolysis. Carbon 2(3):211–220

    Google Scholar 

  43. 43.

    Hoecker F, Karger‐Kocsis J (1996) Surface energetics of carbon fibers and its effects on the mechanical performance of CF/EP composites. J Appl Polym Sci 59(1):139–153

  44. 44.

    Hoffman W, Hurley W, Liu P, Owens T (1991) The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM. J Mater Res 6(8):1685–1694

    Google Scholar 

  45. 45.

    Oberlin A (1984) Carbonization and graphitization. Carbon 22(6):521–541

    Google Scholar 

  46. 46.

    Bourrat X, Roche E, Lavin J (1990) Structure of mesophase pitch fibers. Carbon 28(2–3):435–446

    Google Scholar 

  47. 47.

    Damodaran S, Desai P, Abhiraman A (1990) Chemical and physical aspects of the formation of carbon fibres from PAN-based precursors. J Text Inst 81(4):384–420

    Google Scholar 

  48. 48.

    Zhu J, Park SW, Joh H-I, Kim HC, Lee S (2013) Preparation and characterization of isotropic pitch-based carbon fiber. Carbon Lett 14(2):94–98

    Google Scholar 

  49. 49.

    Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P (2006) Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 55(8):825–833

    Google Scholar 

  50. 50.

    Gupta A, Harrison I (1996) New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon 34(11):1427–1445

    Google Scholar 

  51. 51.

    Toury B, Miele P, Cornu D, Vincent H, Bouix J (2002) Boron nitride fibers prepared from symmetric and asymmetric alkylaminoborazines. Adv Funct Mater 12(3):228–234

    Google Scholar 

  52. 52.

    Almeida E, Diniz A, Rosolen J, Trava-Airoldi V, Ferreira N (2005) Structural and voltammetric studies at boron-doped diamond electrode grown on carbon felt produced from different temperatures. Diam Relat Mater 14(3):679–684

    Google Scholar 

  53. 53.

    Donnet J-B, Qin R-Y (1992) Study of carbon fiber surfaces by scanning tunnelling microscopy, part i. carbon fibers from different precursors and after various heat treatment temperatures. Carbon 30(5):787–796

    Google Scholar 

  54. 54.

    MInus M, Kumar S (2005) The processing, properties, and structure of carbon fibers. JOM 57(2):52–58

    Google Scholar 

  55. 55.

    Yusof N, Ismail A (2012) Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis 93:1–13

    Google Scholar 

  56. 56.

    Balasubramanian M, Jain M, Bhattacharya S, Abhiraman A (1987) Conversion of acrylonitrile-based precursors to carbon fibres. J Mater Sci 22(11):3864–3872

    Google Scholar 

  57. 57.

    Wicks B, Coyle R (1976) Microstructural inhomogeneity in carbon fibres. J Mater Sci 11(2):376–383

    Google Scholar 

  58. 58.

    Donnet J (1982) Structure and reactivity of carbons: from carbon black to carbon composites. Carbon 20(4):267–282

    Google Scholar 

  59. 59.

    Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24:843–854

    Google Scholar 

  60. 60.

    Fitzer E (1990) Carbon fibres—present state and future expectations. In: Carbon Fibers Filaments and Composites. Springer, Berlin, pp 3–41

    Google Scholar 

  61. 61.

    Meier U, Winistorfer A (1995) 55 RETROFITTING OF STRUCTURES THROUGH EXTERNAL BONDING OF CFRP SHEETS. In: Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium,. CRC Press, p 465

  62. 62.

    Kumar S, Adams W, Helminiak T (1988) Uniaxial compressive strength of high modulus fibers for composites. J Reinf Plast Compos 7(2):108–119

    Google Scholar 

  63. 63.

    Leal AA, Deitzel JM, Gillespie JW Jr (2009) Compressive strength analysis for high performance fibers with different modulus in tension and compression. J Compos Mater 43(6):661–674

    Google Scholar 

  64. 64.

    Hayes G, Edie D, Kennedy J (1993) The recoil compressive strength of pitch-based carbon fibres. J Mater Sci 28(12):3247–3257

    Google Scholar 

  65. 65.

    Peebles LH (2018) Carbon fibers: formation, structure, and properties. CRC Press, Boca Raton

    Google Scholar 

  66. 66.

    Naito K (2018) Stress analysis and fracture toughness of notched polyacrylonitrile (PAN)-based and pitch-based single carbon fibers. Carbon 126:346–359

    Google Scholar 

  67. 67.

    Newcomb BA, Chae HG (2018) The properties of carbon fibers. In: Handbook of properties of textile and technical Fibres, 2nd edn. Elsevier, Amsterdam, pp 841–871

    Google Scholar 

  68. 68.

    Chung DD, Chung D (2012) Carbon fiber composites. Butterworth-Heinemann, Oxford

    Google Scholar 

  69. 69.

    Tiwari S, Bijwe J (2014) Surface treatment of carbon fibers-a review. Procedia Technol 14:505–512

    Google Scholar 

  70. 70.

    Bacon R, Silvaggi AF (1971) Electron microscope study of the microstructure of carbon and graphite fibers from a rayon precursor. Carbon 9(3):321–325. https://doi.org/10.1016/0008-6223(71)90051-0

    Google Scholar 

  71. 71.

    Tang LG (1996) Influence of boron treatment on oxidation of carbon fiber in air. J Appl Polym Sci 59(6):915–921

    Google Scholar 

  72. 72.

    Roche E, Lavin J, Parrish R (1988) The mosaic nature of the graphite sheet in pitch-based carbon fibers. Carbon 26(6):911–913

    Google Scholar 

  73. 73.

    Kumar S, Anderson D, Crasto A (1993) Carbon fibre compressive strength and its dependence on structure and morphology. J Mater Sci 28(2):423–439

    Google Scholar 

  74. 74.

    Bhawal P, Das TK, Ganguly S, Mondal S, Ravindren R, Das NC (2018) Fabrication of light weight mechanically robust short carbon Fiber/ethylene methyl acrylate polymeric nanocomposite for effective electromagnetic interference shielding. J Polym Sci Appl 1:2(1-13)

  75. 75.

    Jia Z, Li T, F-p C, Wang L (2018) An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Compos Sci Technol 154:53–63. https://doi.org/10.1016/j.compscitech.2017.11.015

    Google Scholar 

  76. 76.

    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Google Scholar 

  77. 77.

    Jiang D, Liu L, Zhao F, Zhang Q, Sun S, He J, Jiang B, Huang Y (2014) Improved interfacial properties of carbon fiber/unsaturated polyester composites through coating polyhedral oligomeric silsesquioxane on carbon fiber surface. Fibers Polym 15(3):566–573

    Google Scholar 

  78. 78.

    Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023

    Google Scholar 

  79. 79.

    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22

    Google Scholar 

  80. 80.

    Vautard F, Ozcan S, Poland L, Nardin M, Meyer H (2013) Influence of thermal history on the mechanical properties of carbon fiber–acrylate composites cured by electron beam and thermal processes. Compos Part A 45:162–172

    Google Scholar 

  81. 81.

    Tezcan J, Ozcan S, Gurung B, Filip P (2008) Measurement and analytical validation of interfacial bond strength of PAN-fiber-reinforced carbon matrix composites. J Mater Sci 43(5):1612–1618

    Google Scholar 

  82. 82.

    Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150

    Google Scholar 

  83. 83.

    Hine P, Davidson N, Duckett R, Ward I (1995) Measuring the fibre orientation and modelling the elastic properties of injection-moulded long-glass-fibre-reinforced nylon. Compos Sci Technol 53(2):125–131

    Google Scholar 

  84. 84.

    Bijsterbosch H, Gaymans R (1995) Polyamide 6—long glass fiber injection moldings. Polym Compos 16(5):363–369

    Google Scholar 

  85. 85.

    Chung DD (2003) Science of composite materials. In: Composite Materials. Springer, Berlin, pp 15–54

    Google Scholar 

  86. 86.

    Whang W-T, Liu W-L (1990) Interfacial characteristics of high performance carbon fiber/thermoplastic composites with polyimide coupling agents. SAMPE Q 22(1):3–9

    Google Scholar 

  87. 87.

    Carrillo G, Phelan P, Brown W, Newell E (1988) Materials-Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7–10, 1988. Society for the Advancement of material and process engineering, Covina, CA

  88. 88.

    Fu S-Y, Lauke B, Mäder E, Yue C-Y, Hu X (2000) Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos Part A 31(10):1117–1125

    Google Scholar 

  89. 89.

    Twardowski T, Geil P (1991) A highly fluorinated epoxy resin. III Behavior in composite and fiber-coating applications. J Appl Polym Sci 42(6):1721–1726

    Google Scholar 

  90. 90.

    Recker H, Altstadt V, Eberle W (1990) Toughened thermosets for damage tolerant carbon fiber reinforced composites. SAMPE J 26(2):73–78

    Google Scholar 

  91. 91.

    Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca Raton

    Google Scholar 

  92. 92.

    Morgan R, Jurek R, Larive D, Tung C, Donnellan T (1990) The toughening of Bismaleimides. Polym Mater Sci Eng 63:681–685

    Google Scholar 

  93. 93.

    Wright W (1990) The carbon fibre/epoxy resin interphase--a review. II. Composite Polymers 3(5):360–401

    Google Scholar 

  94. 94.

    Fu X, Chung DD (1998) Strain-sensing concrete improved by carbon fiber surface treatment. In: 5th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, San Diego, p 53–63. https://doi.org/10.1117/12.310620

  95. 95.

    Chung DD (2013) Composite materials: functional materials for modern technologies. Springer Science & Business Media, Berlin

    Google Scholar 

  96. 96.

    Mochida I, Toshima H, Korai Y, Hino T (1989) Oxygen distribution in the mesophase pitch fibre after oxidative stabilization. J Mater Sci 24(2):389–394

    Google Scholar 

  97. 97.

    Barbier B, Pinson J, Desarmot G, Sanchez M (1990) Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. J Electrochem Soc 137(6):1757–1764

    Google Scholar 

  98. 98.

    Hong J, Harbison G (1990) Polym. Prepr.(am. Chem. Soc., div. Polym. Chem.). In: characterization of polymer order and dynamics using high-resolution solid-state NMR

  99. 99.

    Moyer RL (1976) Methods of making continuous length reinforced plastic articles. US Patent No 3,993,726

  100. 100.

    Ho M-p, Wang H, Lee J-H, Ho C-k, K-t L, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B 43(8):3549–3562

    Google Scholar 

  101. 101.

    Agarwal BD, Broutman LJ, Chandrashekhara K (2017) Analysis and performance of fiber composites. Wiley, Hoboken

    Google Scholar 

  102. 102.

    Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53

    Google Scholar 

  103. 103.

    Ružbarský J, Žarnovský J (2013) Optimization of parameters in the compression moulding process of thermoset products. In: Advanced Materials Research. Trans Tech Publ, Stafa-Zurich, pp 61–66

    Google Scholar 

  104. 104.

    Soutis C (2005) Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2):143–151

    Google Scholar 

  105. 105.

    Stabler WR, Tatterson GB, Sadler RL, El-Shiekh AH (1992) Void minimization in the manufacture of carbon fiber composites by resin transfer molding. SAMPE Quarterly. Society of Aerospace Material and Process Engineers, United States 23 (2)

  106. 106.

    Laurenzi S, Marchetti M (2012) Advanced composite materials by resin transfer molding for aerospace applications. INTECH Open Access Publisher, London

    Google Scholar 

  107. 107.

    Dickman O, Lindersson K, Svensson L (1990) Filament winding of thermoplastic matrix composites. Plast Rubb Proc Appl 13(1):9–14

    Google Scholar 

  108. 108.

    Weiss R (1991) Fabrication techniques for thermoplastic composites. Cryogenics 31(4):319–322

    Google Scholar 

  109. 109.

    Lee Y, Porter RS (1988) Effects of thermal history on crystallization of poly (ether ether ketone)(PEEK). Macromolecules 21(9):2770–2776

    Google Scholar 

  110. 110.

    Karbhari V, Chin J, Hunston D, Benmokrane B, Juska T, Morgan R, Lesko J, Sorathia U, Reynaud D (2003) Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure. J Compos Constr 7(3):238–247

    Google Scholar 

  111. 111.

    Grace NF, Singh S (2005) Durability evaluation of carbon fiber-reinforced polymer strengthened concrete beams: experimental study and design. ACI Struct J 102(1):40

    Google Scholar 

  112. 112.

    Gutowski TGP (1997) Advanced composites manufacturing. Wiley, Hoboken

    Google Scholar 

  113. 113.

    Cogswell FN (2013) Thermoplastic aromatic polymer composites: a study of the structure, processing and properties of carbon fibre reinforced polyetheretherketone and related materials. Elsevier, Amsterdam

    Google Scholar 

  114. 114.

    Jeronimidis G, Parkyn A (1988) Residual stresses in carbon fibre-thermoplastic matrix laminates. J Compos Mater 22(5):401–415

    Google Scholar 

  115. 115.

    Shi L, Tummala NR, Striolo A (2010) C12E6 and SDS surfactants simulated at the vacuum− water interface. Langmuir 26(8):5462–5474

    Google Scholar 

  116. 116.

    Iroh J, Bell J, Scola D (1990) Thermoplastic matrix composites by aqueous electrocopolymerization onto graphite fibers. J Appl Polym Sci 41(3–4):735–749

    Google Scholar 

  117. 117.

    Pickering SJ (2006) Recycling technologies for thermoset composite materials—current status. Compos Part A 37(8):1206–1215

    Google Scholar 

  118. 118.

    Turner T, Pickering S, Warrior N (2009) Development of high value composite materials using recycled carbon fibre. In: SAMPE’09 conference. SAMPE, Baltimore, MD, USA

  119. 119.

    Buckley JD, Edie DD (1993) Carbon-carbon materials and composites, vol 1254. William Andrew, Norwich

    Google Scholar 

  120. 120.

    Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos Part A 38(6):1525–1532

    Google Scholar 

  121. 121.

    He P, Jia D, Lin T, Wang M, Zhou Y (2010) Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram Int 36(4):1447–1453

    Google Scholar 

  122. 122.

    Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    Google Scholar 

  123. 123.

    Xu Y, Van Hoa S (2008) Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos Sci Technol 68(3):854–861

    Google Scholar 

  124. 124.

    Huettner W, Claes L (1990) Carbon based materials in medical applications. In: Carbon fibers filaments and composites. Springer, Berlin, pp 337–365

    Google Scholar 

  125. 125.

    Nash N, Young T, McGrail P, Stanley W (2015) Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites—a review. Mater Des 85:582–597

    Google Scholar 

  126. 126.

    Toldy A, Szolnoki B, Marosi G (2011) Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym Degrad Stab 96(3):371–376

    Google Scholar 

  127. 127.

    Edie D (1998) The effect of processing on the structure and properties of carbon fibers. Carbon 36(4):345–362

    Google Scholar 

  128. 128.

    Huettner W, Weiss R (1990) High performance carbon fibre composites with thermoplastic matrices. In: Carbon fibers filaments and composites. Springer, Berlin, pp 221–243

    Google Scholar 

  129. 129.

    Ogihara S, Takeda N, Kobayashi S, Kobayashi A (1999) Effects of stacking sequence on microscopic fatigue damage development in quasi-isotropic CFRP laminates with interlaminar-toughened layers. Compos Sci Technol 59(9):1387–1398

    Google Scholar 

  130. 130.

    Miller AG, Lovell DT, Seferis JC (1994) The evolution of an aerospace material: influence of design, manufacturing and in-service performance. Compos Struct 27(1–2):193–206

    Google Scholar 

  131. 131.

    Chandra R, Singh S, Gupta K (1999) Damping studies in fiber-reinforced composites–a review. Compos Struct 46(1):41–51

    Google Scholar 

  132. 132.

    Shim HH, Kwon OK, Youn JR (1990) Friction and wear behavior of graphite fiber-reinforced composites. Polym Compos 11(6):337–341

    Google Scholar 

  133. 133.

    Shim HH, Kwon OK, Youn JR (1992) Effects of fiber orientation and humidity on friction and wear properties of graphite fiber composites. Wear 157(1):141–149

    Google Scholar 

  134. 134.

    Leng J, Lv H, Liu Y, Du S (2007) Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl Phys Lett 91(14):144105

    Google Scholar 

  135. 135.

    Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269

    Google Scholar 

  136. 136.

    Das TK, Bhawal P, Ganguly S, Mondal S, Remanan S, Ghosh S, Das NC (2018) Synthesis of hydroxyapatite nanorods and its use as a nanoreinforcement block for ethylene methacrylate copolymer matrix. Polym Bull. https://doi.org/10.1007/s00289-018-2565-x

  137. 137.

    Chung D (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285

    Google Scholar 

  138. 138.

    Chung DD (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9(3):350–354

    Google Scholar 

  139. 139.

    Reed R, Golda M (1997) Cryogenic composite supports: a review of strap and strut properties. Cryogenics 37(5):233–250

    Google Scholar 

  140. 140.

    Schramm R, Kasen M (1977) Cryogenic mechanical properties of boron-, graphite-, and glass-reinforced composites. Mater Sci Eng 30(3):197–204

    Google Scholar 

  141. 141.

    Liu W, Chen Z, Cheng X, Wang Y, Amankwa AR, Xu J (2016) Design and ballistic penetration of the ceramic composite armor. Compos Part B 84:33–40

    Google Scholar 

  142. 142.

    Van Acker K, Verpoest I, De Moor J, Duflou J-R, Dewulf W (2009) Lightweight materials for the automotive: environmental impact analysis of the use of composites. Rev Metal 106(12):541–546

    Google Scholar 

  143. 143.

    Hollaway L (2011) Thermoplastic–carbon fiber composites could aid solar-based power generation: possible support system for solar power satellites. J Compos Constr 15(2):239–247

    Google Scholar 

  144. 144.

    Lionetto F, Morillas MN, Pappadà S, Buccoliero G, Villegas IF, Maffezzoli A (2018) Hybrid welding of carbon-fiber reinforced epoxy based composites. Compos Part A 104:32–40

    Google Scholar 

  145. 145.

    Holmes M (2014) Global carbon fibre market remains on upward trend. Reinf Plast 58(6):38–45

    Google Scholar 

  146. 146.

    Santos AL (2015) Estudo da modificação superficial de fibras de carbono por meio de tratamentos a plasma para o aumento da adesão na interface de compósitos fibra de carbono/PPS composites. 155 f. Thesis (Doctorate) - Universidade Estadual Paulista. Faculdade de Engenharia de Guaratinguetá. 

  147. 147.

    Joshi SV, Drzal L, Mohanty A, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35(3):371–376

    Google Scholar 

  148. 148.

    Bekyarova E, Thostenson E, Yu A, Kim H, Gao J, Tang J, Hahn H, Chou T-W, Itkis M, Haddon R (2007) Multiscale carbon nanotube− carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970–3974

    Google Scholar 

  149. 149.

    Mouritz A, Bannister M, Falzon P, Leong K (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos Part A 30(12):1445–1461

    Google Scholar 

  150. 150.

    Laurenzi S, Marchetti M (2012) Advanced composite materials by resin transfer molding for aerospace applications. In: Composites and their properties. InTech, London

    Google Scholar 

  151. 151.

    LEE S, JONAS T, DISALVO G (1991) The beneficial energy and environmental impact of composite materials- An unexpected bonus. SAMPE J 27:19–25

    Google Scholar 

  152. 152.

    Adeli H (1986) Artificial intelligence in structural engineering. Eng Anal 3(3):154–160

    Google Scholar 

  153. 153.

    Friedrich K (2016) Carbon fiber reinforced thermoplastic composites for future automotive applications. In: AIP Conference Proceedings, vol 1. AIP Publishing, Melville, p 020001

    Google Scholar 

  154. 154.

    Jureczko M, Pawlak M, Mężyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167(2–3):463–471

    Google Scholar 

  155. 155.

    Thomas L, Ramachandra M (2018) Advanced materials for wind turbine blade-a review. Mater Today 5 ((1):2635–2640

    Google Scholar 

  156. 156.

    Kumar KV, Safiulla M, Ahmed AK (2014) An experimental evaluation of Fiber reinforced polypropylene thermoplastics for aerospace applications. J Mech Eng 43(2):92–97

    Google Scholar 

  157. 157.

    Allred J (2007) Carbon-Fiber laminate musical instrument sound board. US Patent No 7,276,868

  158. 158.

    Seal EC (2017) Carbon Fiber guitar. U.S. Patent No. 9,171,528

  159. 159.

    Ono T, Miyakoshi S, Watanabe U (2002) Acoustic characteristics of unidirectionally fiber-reinforced polyurethane foam composites for musical instrument soundboards. Acoust Sci Technol 23(3):135–142

    Google Scholar 

  160. 160.

    Ono T, Isomura D (2004) Acoustic characteristics of carbon fiber-reinforced synthetic wood for musical instrument soundboards. Acoust Sci Technol 25(6):475–477

    Google Scholar 

  161. 161.

    Gay D, Hoa SV (2007) Composite materials: design and applications. CRC Press, Boca Raton

    Google Scholar 

  162. 162.

    Savage G (1991) Composite materials in formula 1 racing. Met Mater 7(10):617–624

    Google Scholar 

  163. 163.

    Yeh C-H (1990) Fabrication method of a hollow racket made of carbon fiber. U.S. Patent No. 4,931,247

  164. 164.

    Nilsson F, Unge M (2016) Conductivity simulations of field-grading composites. J Phys D Appl Phys 49(33):335303

    Google Scholar 

  165. 165.

    Jang J-U, Park HC, Lee HS, Khil M-S, Kim SY (2018) Electrically and thermally conductive carbon fibre fabric reinforced polymer composites based on Nanocarbons and an in-situ Polymerizable cyclic Oligoester. Sci Rep 8(1):7659

    Google Scholar 

  166. 166.

    Das NC, Khastgir D, Chaki T, Chakraborty A (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos Part A 31(10):1069–1081

  167. 167.

    Das NC, Chaki T, Khastgir D, Chakraborty A (2001) Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber-filled composites based on rubber and rubber blends. Adv Polym Technol 20(3):226–236

  168. 168.

    Qu M, Nilsson F, Schubert DW (2018) Effect of filler orientation on the electrical conductivity of carbon Fiber/PMMA composites. Fibers 6(1):3

    Google Scholar 

  169. 169.

    Luo X, Chung D (1999) Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos Part B 30(3):227–231

    Google Scholar 

  170. 170.

    Ganguly S, Bhawal P, Ravindren R, Das NC (2018) Polymer nanocomposites for electromagnetic interference shielding: a review. J Nanosci Nanotechnol 18(11):7641–7669

    Google Scholar 

  171. 171.

    Bhawal P, Ganguly S, Das TK, Mondal S, Das NC (2018) Mechanically robust conductive carbon clusters confined ethylene methyl acrylate–based flexible composites for superior shielding effectiveness. Polym Adv Technol 29(1):95–110

  172. 172.

    Bhawal P, Ganguly S, Das TK, Mondal S, Choudhury S, Das NC (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Compos Part B 134:46–60

  173. 173.

    Mondal S, Das P, Ganguly S, Ravindren R, Remanan S, Bhawal P, Das TK, Das NC (2018) Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Compos Part A 107:447–460

    Google Scholar 

  174. 174.

    Park JB, Bronzino JD (2002) Biomaterials: principles and applications. CRC Press, Boca Raton

    Google Scholar 

  175. 175.

    Pendhari SS, Kant T, Desai YM (2008) Application of polymer composites in civil construction: a general review. Compos Struct 84(2):114–124

    Google Scholar 

  176. 176.

    Wu J, Chung D (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 40(3):445–447

    Google Scholar 

  177. 177.

    Teng J, Yu T, Fernando D (2012) Strengthening of steel structures with fiber-reinforced polymer composites. J Constr Steel Res 78:131–143

    Google Scholar 

  178. 178.

    Bank LC (2006) Composites for construction: structural design with FRP materials. Wiley, Hoboken

    Google Scholar 

  179. 179.

    Rezaei F, Yunus R, Ibrahim NA (2009) Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des 30(2):260–263

    Google Scholar 

  180. 180.

    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Google Scholar 

  181. 181.

    Friedrich K, Zhang Z, Schlarb AK (2005) Effects of various fillers on the sliding wear of polymer composites. Compos Sci Technol 65(15):2329–2343

    Google Scholar 

  182. 182.

    Muthukumar T, Aravinthan A, Lakshmi K, Venkatesan R, Vedaprakash L, Doble M (2011) Fouling and stability of polymers and composites in marine environment. Int Biodeterior Biodegrad 65(2):276–284. https://doi.org/10.1016/j.ibiod.2010.11.012

    Google Scholar 

  183. 183.

    Baier R, Meyer A, DePalma V, King R, Fornalik M (1983) Surface microfouling during the induction period. J Heat Transf 105(3):618–624

    Google Scholar 

  184. 184.

    Das TK, Ganguly S, Bhawal P, Mondal S, Das NC (2018) A facile green synthesis of silver nanoparticle-decorated hydroxyapatite for efficient catalytic activity towards 4-nitrophenol reduction. Res Chem Intermed 44(2):1189–1208

    Google Scholar 

  185. 185.

    Das TK, Ganguly S, Bhawal P, Remanan S, Mondal S, Das NC (2018) Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Appl Nanosci 8(1–2):173–186

  186. 186.

    Das TK, Bhawal P, Ganguly S, Mondal S, Das NC (2018) A facile green synthesis of amino acid boosted ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surf Interface 13:79–91

    Google Scholar 

  187. 187.

    Das TK, Ganguly S, Bhawal P, Remanan S, Ghosh S, Das NC (2018) A facile green synthesis of silver nanoparticles decorated silica nanocomposites using mussel inspired polydopamine chemistry and assessment its catalytic activity. J Environ Chem Eng 6(6):6989–7001

    Google Scholar 

  188. 188.

    Rodriguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36(3):159–175

  189. 189.

    Sawangphruk M, Suksomboon M, Kongsupornsak K, Khuntilo J, Srimuk P, Sanguansak Y, Klunbud P, Suktha P, Chiochan P (2013) High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J Mater Chem A 1(34):9630–9636

    Google Scholar 

  190. 190.

    An X, Ma J, Wang K, Zhan M (2016) Growth of silver nanowires on carbon fiber to produce hybrid/waterborne polyurethane composites with improved electrical properties. J Appl Polym Sci 133(9)

  191. 191.

    Bakis CE, Bank LC, Brown V, Cosenza E, Davalos J, Lesko J, Machida A, Rizkalla S, Triantafillou T (2002) Fiber-reinforced polymer composites for construction—state-of-the-art review. J Compos Constr 6(2):73–87

    Google Scholar 

  192. 192.

    Dhand V, Mittal G, Rhee KY, Park S-J, Hui D (2015) A short review on basalt fiber reinforced polymer composites. Compos Part B 73:166–180

    Google Scholar 

  193. 193.

    Carberry W (2009) Aerospace’s role in the development of the recycled carbon fibre supply chain. In: Carbon fibre recycling and reuse 2009 conference. IntertechPira, Hamburg

    Google Scholar 

  194. 194.

    Eedy DJ (1996) Carbon-fibre-induced airborne irritant contact dermatitis. Contact Dermatitis 35(6):362–363

    Google Scholar 

  195. 195.

    Muller J, Huaux F, Lison D (2006) Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon 44(6):1048–1056

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Narayan Ch. Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, T.K., Ghosh, P. & Das, N.C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv Compos Hybrid Mater 2, 214–233 (2019). https://doi.org/10.1007/s42114-018-0072-z

Download citation

Keywords

  • Carbon fiber
  • Polymer matrix composite
  • Reinforcement
  • Structural applications