Skip to main content

Advertisement

Log in

Dynamic mechanical analysis of PVC/TiO2 nanocomposites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The PVC/TiO2 nanocomposite samples were structurally characterized by scanning electron microscope that ascertains its polymer nanocomposite nature. The dynamic mechanical response, i.e., storage moduli and phase transition temperature accompanied by temperature have been studied through Dynamic Mechanical Analyzer (Tritec 2000 DMA). The intrinsic viscosity and phase transition activation energy is resolute in using these data. The results reveal that TiO2 nanoparticle dispersion in PVC causes prominent enhancement in observed properties. However, the enhancement depends on proportion of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shabana YM, Wang GT (2013) Thermomechanical modeling of polymer nanocomposites by the asymptotic homogenization method. Acta Mech 224:1213–1224

    Article  Google Scholar 

  2. Choi J, Shin H, Yang S, Cho M (2015) The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: a multiscale approach. Compos Struct 119:365–376

    Article  Google Scholar 

  3. Pimentel Real LE, Ferraria AM, Botelho do Rego AM (2008) Comparison of different photo-oxidation conditions of poly(vinyl chloride) for outdoor applications. Polym Test 27:743–751

    Article  Google Scholar 

  4. Liu ZH, Zhang XD, Zhu XG, Li RKY, Wang FS, Choy CL (1998) Effect of morphology on the brittle ductile transition of polymer blends: 6. Influence of rubber particle spatial distribution on the toughening and stiffening efficiency of poly (vinyl chloride)/nitrile rubber blends. Polymer 39:5047–5052

    Article  CAS  Google Scholar 

  5. Wong-On J, Wootthikanokkhan J (2003) Dynamic vulcanization of acrylic rubber-blended PVC. J Appl Polym Sci 88:2657–2663

    Article  CAS  Google Scholar 

  6. Whittle AJ, Burford RP, Hoffman M (2001) Assessment of strength and toughness of modified PVC pipes. J Plastics Rubber Compos 30:434–440

    Article  CAS  Google Scholar 

  7. Crawford E, Lesser A (2000) Mechanics of rubber particle cavitation in toughened polyvinylchloride (PVC). J Polymer 41:5865–5870

    Article  CAS  Google Scholar 

  8. Zhao J, Li H, Cheng G, Cai Y (2016) On predicting the effective elastic properties of polymer nanocomposites by novel numerical implementation of asymptotic homogenization method. Compos Struct 135:297–305

    Article  Google Scholar 

  9. Wan CY, Qiao XY, Zhang Y, Zhang YX (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22:453–461

    Article  CAS  Google Scholar 

  10. Xie X-L, Liu Q-X, Li RK-Y, Zhou X-P, Zhang QX, Yu Z-Z, Mai Y-W (2004) Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer 45:6665–6673

    Article  CAS  Google Scholar 

  11. Wang GJ, Wang LJ, Mei Z, Chang ZM (2009) Reinforcement and toughening of poly(vinyl chloride) with poly(caprolactone) grafted carbon nanotubes. Compos A: Appl Sci Manuf 40:1476–1481

    Article  Google Scholar 

  12. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  13. Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6:193–207

    Article  CAS  Google Scholar 

  14. Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C 15(1–2):183–185

  15. Liu F, Liu H, Li X, Zhao H, Zhu D, Zheng Y, Li C (2012) Nano-TiO2@ Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Appl Surf Sci 258(10):4667–4671

  16. Yoo H, Kwak SY (2011) TiO2-encapsulating PVC capable of catalytic self-suppression of dioxin emission in waste incineration as an eco-friendly alternative to conventional PVC. Appl Catal B Environ 104(1–2):193–200

    Article  CAS  Google Scholar 

  17. Yang C, Gong C, Peng T, Deng K, Zan L (2010) High photocatalytic degradation activity of the polyvinyl chloride (PVC)–vitamin C (VC)–TiO2 nano-composite film. J Hazard Mater 178(1–3):152–156

    Article  CAS  Google Scholar 

  18. Gao AX, Bolt JD, Feng AA (2008) Role of titanium dioxide pigments in outdoor weathering of rigid PVC. Plast, Rubber Compos 37(9/10):397–402

    Article  CAS  Google Scholar 

  19. Mathur V, Dixit M, Rathore KS, Saxena NS, Sharma K (2011) Morphological and mechanical characterization of PMMA-CdS nanocomposite. Front Sci Chem Eng 5(2):258–263

    Article  CAS  Google Scholar 

  20. Menard K (1999) Dynamic mechanical analysis: a practical introduction. CRC Press LLC, Boca Raton, pp 61–64–94–100

    Book  Google Scholar 

  21. Mathur V, Rathore KS, Sharma K (2013) Evaluation of energy band gap, thermal conductivity, phase transition temperature and elastic response of PS/CdS semiconducting optical nanocomposite. World J Nanosci Eng 2(3):93–99

    Article  Google Scholar 

  22. Mathur V, Dixit M, Rathore KS, Saxena NS, Sharma K (2009) Morphological effects on mechanical properties of polystyrene-polyvinylchloride blends. Phase Transit 82(11):769–779

    Article  CAS  Google Scholar 

  23. Beltran M, Marcilla A (1997) Fourier transform infrared spectroscopy applied to the study of PVC decomposition. Europ Polym J 33:1135–1142

    Article  CAS  Google Scholar 

  24. Turhan Y, Dogan M, Alkan M (2010) Poly (vinyl chloride)/kaolinite nanocomposites: characterization and thermal and optical properties. Ind Eng Chem Res 49:1503–1513

    Article  CAS  Google Scholar 

  25. Chatterjee A (2010) Properties improvement of PMMA using nano TiO2. J Appl Polymer Sci 118:2890–2897

    Article  CAS  Google Scholar 

  26. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  27. Manzure A, Sanchez FH (2006) Activation energy for the glass transition of a confined elastomer in HDPE/PP blends. J Macromol Sci Part B Phys 45:139–152

    Article  Google Scholar 

  28. Sastry S (2001) The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409:164

    Article  CAS  Google Scholar 

  29. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48:5662–5670

    Article  CAS  Google Scholar 

  30. Zhang X, Loo LS (2009) Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites. Macromolecules 42:5196–5207

    Article  CAS  Google Scholar 

  31. Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. Appl Mater Interfaces 1:289–300

    Article  CAS  Google Scholar 

  32. Naik MZ, Salker AV (2017) A systematic study of cobalt doped In2O3 nanoparticles and their applications. Mater Res Innov 21:237–243

    Article  CAS  Google Scholar 

  33. Patidar D, Agrawal S, Saxena NS (2011) Storage modulus and glass transition behaviour of CdS/PMMA nano-composites. J Exp Nanosci 6:441–449

    Article  CAS  Google Scholar 

  34. Agrawal S, Patidar D, Saxena NS (2011) Glass transition temperature and thermal stability of ZnS/PMMA nanocomposites. Phase Transit 84:888–900

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mathur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, V., Arya, P.K. Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Adv Compos Hybrid Mater 1, 741–747 (2018). https://doi.org/10.1007/s42114-018-0051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0051-4

Keywords

Navigation