Skip to main content
Log in

Multicriterial techniques for wetland identification using geospatial analyses: the case of the Mefou Basin, Centre Region, Cameroon

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

The rapid urbanisation and anthropisation of wetlands have caused the disappearance of the already fussy wetland boundaries of the Mefou Basin. This has made wetland identification very challenging. The diverse perceptions of stakeholders involved in wetlands management led us to main objective which was to multi-criteria approach for delineating wetlands of the Mefou basin. The specific objective was identifying wetland susceptible sites from topography, slope gradient, presence of water and vegetation. The weighted overlay method was used in a Geographic Information System-based environment to delimit the wetlands. The following data sets were used, the Shuttle Radar Topography Mission Digital Elevation Model, a multispectral Landsat 8 image of the 21/01/2022 and administrative shapefiles from the National Institute of Cartography. The layers were classified in order of importance following Windy and saaty (Wind and Saaty, Management Science 26:641–658, 1980) Saaty (Saaty, Springer, Berline Heidelberg., 1987). The topography, slope gradient, topographic wetness index and vegetation were attributed to the weights of 40, 27.5, 20, and 12.5%, respectively. The results showed that wetlands covered a surface area of 90.03 Km2, constituting 11.20% of the total surface area of the Mefou basin (803.78 km2). Most wetlands of the urbanised northern section of the Mefou basin had been encroached on by human settlement contrary to the rural south, thereby raising the need for conservation. The results showed that the multi-criteria analysis is a good method for identifying wetlands. This result will guide the management of these wetlands and is recommended to ensure the wise use as required by the Ramsar Convention on wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Digital Elevation Model (SRTM) and Landsat image were obtained from the link: https://landsat.gsfc.nasa.gov/satellites/landsat-8/.

References

  • Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology Manage, 18, 281–296.

    Article  Google Scholar 

  • Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193. https://doi.org/10.1890/10-1510.1

    Article  Google Scholar 

  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin, 24(1), 43–69.

    Article  Google Scholar 

  • Bridgewater, P. (2018). Whose nature? What solutions? Linking Ecohydrology to Nature-based solutions. Ecohydrology & Hydrobiology, 18(4), 311–316. https://doi.org/10.1016/j.ecohyd.2018.11.006

    Article  Google Scholar 

  • Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands (pp. 5–11). Wetlands Research Program Technical Report WRP-DE-4. US Army Corps of Engineers, Waterways Experiment Station.

  • Brown, C. G., Jr., Sarabandi, K., & Leland, E. P. (2005). IEEE validation of the shuttle radar topography mission height data. IEEE Transactions On Geoscience And Remote Sensing, 43(8), 1707–1715.

    Article  Google Scholar 

  • Carabajal, C. C., & Harding, D. J. (2006). Srtm C-band and icesat laser altimetry elevation comparisons as a function of tree cover and relief 163. Photogrammetric Engineering & Remote Sensing, 72(3), 287–298. https://doi.org/10.14358/PERS.72.3.287

    Article  Google Scholar 

  • Chatanga, P., & Seleteng-Kose, L. (2021). Montane Palustrine wetlands of lesotho vegetation ecosystem services current status threats and conservation. Wetlands. https://doi.org/10.1007/s13157-021-01470-1

    Article  Google Scholar 

  • Cohen, M. J., Creed, I. F., Alexander, L., Basu, N. B., Calhoun, A. J., Craft, C., DeKeyser, E., Fowler, L., Golden, H. E., Jawitz, J. W., Kalla, P., Kirkman, L. K., Lane, C. R., Lang, M., Leibowitz, S. G., Lewis, D. B., Marton, J., McLaughlin, D. L., Mushet, D. M., & Walls, S. C. (2016). Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences, 113(8), 1978–1986. https://doi.org/10.1073/pnas.1512650113

    Article  CAS  Google Scholar 

  • Cowardin, L. M., Golet, F. C., Edward, T., LaRoe, T. L. (1979). Classification of wetlands and deepwater habitats of the United States (pp. 24–31). FWS/OBS-79/31, December 1979. Tallahassee, FL: Department of Environmental Regulations.

  • Dahmus, M. E., Baker, M. E., & Hoare, A. (2016). Wetland identification using aerial photography: A guidebook of indicators for use in the field. Environmental Protection Agency.

    Google Scholar 

  • Dargie, Greta Christina (2015) Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. PhD thesis, University of Leeds. White Rose eTheses Online

  • Das, K. (2017). NDVI and NDWI-based change detection analysis of Borfoibam Beelmukh Wet landscape, Assam using IRS LISS III data. ADBU-Journal of Engineering Technology, 6(2), 17–21.

    Google Scholar 

  • Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934–941. https://doi.org/10.1071/MF14173

    Article  Google Scholar 

  • Dehm, D., Becker, R., & Godre, A. (2019). SUAS-based multispectral imagery for monitoring wetland inundation and vegetation. Environmental Sciences. https://doi.org/10.20944/preprints201911.0326.v1

    Article  Google Scholar 

  • Deng, Y., Chen, X., Chuvieco, E., Warner, T., & Wilson, J. P. (2007). Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sensing of Environment, 111(1), 122–134.

    Article  Google Scholar 

  • Eastman, J. R. (1995). Multi-criteria evaluation and GIS. Geographical information systems: Principles and applications (pp. 493–501).

  • Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A Review of Wetland Remote Sensing. Sensors., 17(4), 777. https://doi.org/10.3390/s17040777

    Article  Google Scholar 

  • Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J. (2001) GPS - theory and practice, Section 10.2.1 (p. 282). Vienna: Springer.

  • Hughes, L. (2018). The world's greatest wetlands and the creatures. Wanderlust. Available at https://www.wanderlust.co.uk/content/worlds-greatest-wetlands/. https://wesr.unep.org/media/docs/assessments/unep_wwqa_report_web.pdf. Accessed 3 Nov 2023.

  • Islam, M. A., Thenkabail, P. S., Kulawardhana, R. W., Alankara, R., Gunasinghe, S., Edussriya, C., & Gunawardana, A. (2008). Semi-automated methods for mapping wetlands using Landsat ETM+ and SRTM data. International Journal of Remote Sensing, 29(24), 7077–7106 7: 63-93.

    Article  Google Scholar 

  • IUCN. (1997). Rehabilitation of the Waza-Logone floodplain -Republic of Cameroon-Proposals for Priority studies. Yaounde Cameroon: IUCN regional office.

  • Ju, Y., & Bohrer, G. (2020). Classification of Wetland Vegetation Based on NDVI Time Series Generated from HLS Dataset. https://oaks.kent.edu/node/10087. Accessed 17 Mar 2024.

  • Kabii, T. (2022). An Overview of African Wetlands (pp. 1–7). AquaDoc.

  • Kaufman, Y. J. (2009). Remote sensing of atmospheric aerosol and its effect on climate. Bulletin of the American Meteorological Society, 80(5), 835–865.

    Google Scholar 

  • Kometa, S. S. (2013). Wetlands Exploitation along the Bafoussam – Bamenda Road Axis of the Western Highlands of Cameroon. Journal of Human Ecology, 41(1), 25–32. https://doi.org/10.1080/09709274.2013.11906550

    Article  Google Scholar 

  • Kongnso, W. E., Yemmafouo, A., Anehmbom, G., Assam, E. T. M., & Lebga, A. K. (2020). Mapping the evolution of urban wetland services in nkolbisson, Yaounde, Cameroon, a remote sensing-gis approach. Global Journal of Engineering Science and Research. https://doi.org/10.5281/zenodo.3828010

  • Kuenzer, C., et al. (2011). Remote Sensing of Wetlands: State of the Art and Future Perspectives. Remote Sensing, 3(8), 1850–1895.

    Google Scholar 

  • Kulawardhana, R. W., Thenkabail, P. S., Vithanage, J., Biradar, C., Islam, Md A, Gunasinghe, S., et al. (2007). Evaluation of the wetland mapping methods using Landsat ETM+ and SRTM data. Journal of Spatial Hydrology., 7, 63–93.

    Google Scholar 

  • Lane, C. R., Liu, H., Autrey, B. C., Anenkhonov, O. A., Chepinoga, V. V., & Wu, Q. (2014). Improved wetland classification using eight-band high-resolution satellite imagery and a hybrid approach. Remote Sensing, 6(12), 12187–12216.

    Article  Google Scholar 

  • Lehner, B., et al. (2008). High-resolution mapping of the world’s reservoirs and dams for sustainable River-flow management. Frontiers in Ecology and the Environment, 6(9), 493–502.

    Google Scholar 

  • Libby, I. (2021). Wetland Identification. Retrieved from Earth lab, https://earthlab.colorado.edu/blog/wetland-identification. Accessed 17 Mar 2024.

  • Ligas, M., & Banasik, P. (2011). Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations. Geodesy and Cartography, 60(2), 145–159.

    Article  Google Scholar 

  • Liu, J., Wilson, M., Hu, G., et al. (2018). How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landscape Ecology, 33, 341–352. https://doi.org/10.1007/s10980-018-0620-5

    Article  Google Scholar 

  • Lu, M., Hamunyela, E., Verbesselt, J., & Pebesma, E. (2017). Dimension reduction of multi-spectral satellite image time series to improve deforestation monitoring. Remote Sensing, 9(10), 1025. https://doi.org/10.3390/rs9101025

    Article  Google Scholar 

  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.

    Article  Google Scholar 

  • Margono, B. A., Bwangoy, J.-R., Potapov, P. V., & Hansen, M. C. (2014). Mapping wetlands in Indonesia using Landsat and PALSAR data-sets and derived topographical indices. Geo-Spatial Information Science, 17(1), 60–71. https://doi.org/10.1080/10095020.2014.898560

    Article  Google Scholar 

  • Mintesnot, B., Karuturi, V. S., & Tesfaye, K. (2021). Wetland mapping and evaluating the impacts on hydrology, using geospatial techniques: a case of Geba Watershed, Southwest Ethiopia. Geology, Ecology and Landscape, 7(4), 294–299. https://doi.org/10.1080/24749508.2021.195374

    Article  Google Scholar 

  • Mitsch, W.J., Gosselink, J.G. (2015). Wetlands (4th ed.). Copyright 2007 by John Wiley & Sons, Inc, Canada Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

  • Ngala H, Ntani. KN Feumba, R., Takem M B, (2015) Urbanisation, wetland retreat and heat island development in Yaounde, Cameroon. UGEC VIEWPOINTS A Blog on Urbanization and Global Environmental Change

  • Nsangou, D., Kpoumié, A., Mfonka, Z., Ngouh, A. N., & Fossi, D. H. (2022). Urban flood susceptibility modelling using AHP and GIS approach: the case of the Mfoundi watershed at Yaoundé in the South-Cameroon plateau. Scientific African, 15, e01043.

    Article  Google Scholar 

  • Ntouda, O., Leumbe, O., Lemotio, W., Kanda, S. J., & Kamto, P. G. (2022). Contribution à la cartographie de l’aléa inondation dans le bassin versant du Mfoundi à Yaoundé (Cameroun) par l’Analyse Multi Critère (AMC) basée sur le Processus d’Analyse Hiérarchique (AHP) Alex Bulletin de l’Institut Scientifique. Rabat, Section Sciences de la Terre, 44, 13–27.

    Google Scholar 

  • O’Neil, G. L., Saby, L., Band, L. E., & Goodall, J. L. (2019). Effects of LiDAR DEM Smoothing and Conditioning Techniques on a Topography-Based Wetland Identification Model. Water Resources Research, 55(5), 4343–4363. https://doi.org/10.1029/2019WR024784

    Article  Google Scholar 

  • Owona, S., Schulzb, B., Ratschbacherc, L., Ondoa, J. M., Ekodecka, G. E., Tchouad, F. M., & Affaton, P. (2011). Pan-African metamorphic evolution in the southern Yaounde Group(Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites. Journal of African Earth Sciences, 59(1), 125–139. https://doi.org/10.1016/j.jafrearsci.2010.09.003

    Article  CAS  Google Scholar 

  • Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetland Ecology and Management, 10, 81–402.

    Article  Google Scholar 

  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510.

    Article  Google Scholar 

  • Prasad, S. (2023). dspmuranchi.ac.in. Retrieved from dspmuranchi.ac.in.

  • Pujol, M. J., et al. (2018). Remote sensing of wetlands: An overview of challenges and opportunities. Wetlands Ecology and Management, 26(1), 3–20.

    Google Scholar 

  • Qiusheng,. (2018). GIS and Remote Sensing Applications in Wetland Mapping and Monitoring. In H. Bo (Ed.), Comprehensive Geographic Information Systems (pp. 140–157). Tennessee: Elsevier.

    Google Scholar 

  • Ramsar Convention Secretariat. 2010. Wetland management: frames for managing wetlands of international importance and other wetlands. 4th ed. Vol. 18. Gland: RAMSAR Convention Secretariat. https://www.RAMSAR.org/sites/default/files/documents/pdf/lib/hbk4-18sp.pdf/. Accessed 10 Oct 2022.

  • Saaty, R. W. (1987). What is the analytic hierarchical process? Springer, Berline Heidelberg. https://doi.org/10.1016/0270-0255(87)90473-8

    Article  Google Scholar 

  • Saby, L., Band, L. E., & Goodall, J. L. (2019). Effects of LiDAR DEM Smoothing and Conditioning Techniques on a Topography-Based Wetland Identification Model. Water Resources Research, 55(5), 4343–4363. https://doi.org/10.1029/2019WR024784

    Article  Google Scholar 

  • Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences., 10, 101–112. https://doi.org/10.5194/hess-10-101-2006

    Article  Google Scholar 

  • Sorroshian, S., & Yasamam, P. (2019). Modified Weighted sum method for decision with altered source of information. Mathematics and statistics, 7, 57–60.

    Article  Google Scholar 

  • Swanepoel, C. M. (2007). Discussion paper; Wetland in Agriculture (pp. 2–4). Report No: KV193/07. Pretoria, South Africa: Water Research Commission.

  • Tchamba, M. N., Ajonina, G. N., Boko, M., Elegbede, I., & Salako, V. K. (2018). Multi-criteria decision analysis for prioritizing the restoration of tropical urban wetlands: A case study of Lake Nokoue, Benin. Ecological Indicators, 84, 1–10.

    Google Scholar 

  • Tiner, R. W. (2016). In: Wetland Indicators: A Guide to Wetland Formation, Identification, Delineation, Classification, and Mapping (2nd ed.). CRC Press.

    Book  Google Scholar 

  • US Army Corp of Engineers. (1987). Corps of engineers wetlands delineation manual wetlands research. Program Technical Report Y-87-1 (online edition). Vicksburg, MS: Environmental Laboratory, US Army Corp of Engineers.

  • Uuemaa, E., Tanner, C., Elliott, S., (2018). Challenges in identifying small-scale wetlands using remote sensing Geophysical Research Abstracts Vol. 20, EGU2018–11581, EGU General Assembly 2018 © Author(s) 2018.

  • Vélez Upegui, J. J., Zambrano, J., Wahl, M., Jiménez, P., Suárez, N. I., & Delgado, J. S. (2019). Strategyto determine the existence of small-scale wetlands in tropical Andean zones (Colombia). DYNA, 86(211), 148–156. https://doi.org/10.15446/dyna.v86n211.76627.

    Article  Google Scholar 

  • Wang, Y., Hou, X., Wang, M., Wang, M., Wu, L., Ying, L., & Feng, Y. (2012). Topographic controls on vegetation index in a hilly landscape: A case study in the Jiaodong Peninsula, eastern China. Environmental Earth Sciences, 70(2), 625–634.

    Article  Google Scholar 

  • Wind, Y., & Saaty, T. L. (1980). Marketing Applications of the Analytic Hierarchy Process. Management Science, 26(7), 641–658. https://doi.org/10.1287/mnsc.26.7.641

    Article  Google Scholar 

  • Xiaodong, N., & Shuying, Z. (2011). Classifying Wetland Vegetation Type from MODIS NDVI Time Series Using Fourier Analysis. Applied Informatics and Communication (pp. 66–73). Springer.

    Google Scholar 

  • Zedler, J. B. (2003). wetland at your service; Reducing Impacts of Agriculture at the Watershed Scale. Joy B. Zedler Wetlands at Your Service. Reducing Impacts of Agriculture at the Frontiers in Ecology and the Environment, 1(2), 148–156.

    Google Scholar 

  • Zedler, J. B., & Cox, George W. (1985). Characterising wetland boundaries. A Pacific Coast Example Wetlands, 4, 43–55.

    Google Scholar 

  • Zedler, J. B., & Kercher, Suzanne. (2005). WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour., 30, 39–74. https://doi.org/10.1146/annurev.energy.30.050504.144248

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their heartfelt thanks to a large number of people who have directly and indirectly helped in the successful completion of this work. Our appreciation goes to Professor Hervé Cubizolle of the EVS-ISTHME Laboratory at Jean Monnet University, France and Dr Mengnjo Jude Wirmvem of the National Institute of Geologic Research and Mining Yaounde, Cameroon for their efforts in accomplishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Kongnso.

Ethics declarations

Conflict of interest

The authors want to affirm that there are no known conflicts of interest related to this publication and that there has not been any substantial financial backing for it that would have affected how it turned out. The authors certify that all mentioned authors have read, reviewed, and approved the paper and that no other individuals who meet the requirements for authorship but are not listed have contributed to the work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kongnso, W.E., Kometa, S.S. & Ngala, N.H. Multicriterial techniques for wetland identification using geospatial analyses: the case of the Mefou Basin, Centre Region, Cameroon. Int J Energ Water Res (2024). https://doi.org/10.1007/s42108-024-00294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42108-024-00294-z

Keywords

Navigation