Skip to main content

Advertisement

Log in

Assessment of run-of-river hydropower potential in the data-scarce region, Omo-Gibe Basin, Ethiopia

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Ethiopia has abundant energy resources; however, only 45% of its population has access to energy. The hydropower potential assessment and development in the various river basins of Ethiopia needs more attention. Therefore, this study proposed a strategy to assess and implement the hydropower in the data-scarce region of Ethiopia, the Omo-Gibe basin. In this study, the hydropower potential was assessed using the Geographic Information System and Soil and Water Assessment Tool through the following procedure: (1) the stream network for the Winike river basin was generated; (2) the hydraulic head of second-order and above streams was estimated; (3) the hydropower potential sites with the hydraulic head of 20 m and above were identified; (4) the SWAT parameters were calibrated, validated, and regionalized in the study basin; (5) the flow duration curve was developed; (6) finally, the hydropower potential of each site was estimated. Based on the analysis, 103 potential sites were found to be suitable in the study region based on the available discharge and hydraulic head ranging between 20 and 81 m. The run-of-river hydropower potential of the identified sites was determined by integrating the results of the hydraulic head and dependable flow. In general, the overall analysis showed that the total hydropower potential of the Winike river was found to be 183.16, 125.96, and 33.03 MW at 50, 75, and 90% dependability, respectively. Moreover, the GIS-based multi-criteria decision analysis was considered to rank the potential sites based on their suitability for implementing the hydropower projects in the study region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Abbaspour, K. C. (2015). SWAT ‐ CUP SWAT Calibration and Uncertainty Programs- User Manual. Swiss Federal Institute of Aquatic Science and Technology.

  • Adriel, J., Mendoza, C., Anaharat, T., & Alcazar, C. (2021). Calibration and uncertainty analysis for modelling runoff in the Tambo River Basin, using sequential uncertainty fitting Ver-2 (SUFI-2) Algorithm, Peru. Air, Soil and Water Research, 14, 1–13. https://doi.org/10.1177/1178622120988707

    Article  Google Scholar 

  • Alcalá, G., Grisales-Noreña, L. F., Hernandez-Escobedo, Q., Muñoz-Criollo, J. J., & Revuelta-Acosta, J. D. (2021). Shp assessment for a run-of-river (Ror) scheme using a rectangular mesh sweeping approach (msa) based on gis. Energies, 14(11), 1–21. https://doi.org/10.3390/en14113095

    Article  Google Scholar 

  • Aneseyee, A. B., Elias, E., Soromessa, T., & Feyisa, G. L. (2020). Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin Ethiopia. Science of the Total Environment, 728, 138776. https://doi.org/10.1016/j.scitotenv.2020.138776

    Article  CAS  Google Scholar 

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment Part I: Model development. American Water Resource Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  • Cai, X., Ye, F., & Gholinia, F. (2020). Application of artificial neural network and Soil and Water Assessment Tools in evaluating power generation of small hydropower stations. Energy Reports, 6, 2106–2118. https://doi.org/10.1016/j.egyr.2020.08.010

    Article  Google Scholar 

  • Cibin, R., & Sudheer, K. P. (2010). Sensitivity and identifiability of stream flow generation. Hydrological Processes, 24(April), 1133–1148. https://doi.org/10.1002/hyp.7568

    Article  Google Scholar 

  • Damtew, Y., & Getenet, G. (2019). Assessment of hydropower potential of selected rivers in North Shoa Zone , Amhara Regional State , Ethiopia. American Journal of Energy Research, 7(1), 15–18. https://doi.org/10.12691/ajer-7-1-2

  • Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Eickemeier, P., Matschoss, P., Hansen, G., Kadner, S., Schlömer, S., Zwickel, T., & Stechow, C. Von. (2011). IPCC, 2011: summary for policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press. https://doi.org/10.5860/CHOICE.49-6309

  • El-aziz, T. M. A., & El-salam, N. M. A. (2007). Characteristic equations for hydropower stations of main barrages in Egypt. In Eleventh International Water Technology Conference, IWTC11.

  • Eromo, S., Adane, C., Santosh, A., & Pingale, M. (2016). Assessment of the impact of climate change on surface hydrological processes using SWAT : A case study of Omo-Gibe river basin Ethiopia. Modeling Earth Systems and Environment, 2(4), 1–15. https://doi.org/10.1007/s40808-016-0257-9

    Article  Google Scholar 

  • Gergel’ováKuzevičováKuzevič, M. ŽŠ. (2013). A gis based assessment of hydropower potential in hornád basin. Acta Montanistica Slovaca, 18(2), 91–100.

    Google Scholar 

  • Girma, Z. (2016). Techno-economic feasibility of small scale hydropower in Ethiopia: The case of the Kulfo River, in Southern Ethiopia. Journal of Renewable Energy, 2016, 1–12. https://doi.org/10.1155/2016/8037892

    Article  CAS  Google Scholar 

  • IEA. (2019). Africa Energy Outlook Report. www.iea.org/reports/africa-energy-outlook-2019

  • IHA. (2020). Hydropower Status Report 2020. In International Hydropower Association. https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf

  • Kardhana, H., Arya, D. K., Hadihardaja, I. K., Widyaningtyas, R. E., & Lubis, A. (2017). Small hydropower spot prediction using SWAT and a diversion algorithm, case study: Upper Citarum Basin. AIP Conference Proceedings. https://doi.org/10.1063/1.5011625

    Article  Google Scholar 

  • Khalid, K., Fozi, M., Faiza, N., Rahman, A., & Radzali, M. (2016). Sensitivity analysis in watershed model using SUFI-2 algorithm. Procedia Engineering, 162, 441–447. https://doi.org/10.1016/j.proeng.2016.11.086

    Article  Google Scholar 

  • Khan, M. (2015). Run-of-river hydropower potential of Kunhar River Pakistan. Pakistan Journal of Meteorology, 12(23), 19–26.

    Google Scholar 

  • Kim, D., Jung, I., & Chun, J. A. (2016). A comparison between parameter regionalization and model calibration with flow duration curves for prediction in ungauged catchments. Hydrology and Earth System Sciences Discussions. https://doi.org/10.5194/hess-2016-487

  • Korkovelos, A., Mentis, D., Siyal, S. H., Arderne, C., Rogner, H., Bazilian, M., Howells, M., Beck, H., & De Roo, A. (2018). A geospatial assessment of small-scale hydropower potential in sub-saharan Africa. Energies. https://doi.org/10.3390/en11113100

    Article  Google Scholar 

  • Kusre, B. C., Baruah, D. C., Bordoloi, P. K., & Patra, S. C. (2010). Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India). Applied Energy, 87(1), 298–309. https://doi.org/10.1016/j.apenergy.2009.07.019

    Article  Google Scholar 

  • Mehari, K. (2020). GIS Based Assessment of hydropower potential (A case study on Gumara watershed, Ethiopia). Americican Scientific Research Journal for Engineering,Technology, and Sciences(ASRJETS), 69(1), 26–43.

  • Ministry of Water Irrigation and Energy (MoWIE). (2019). National Electrification Program 2.0. https://www.east-africa-summit.com/sites/default/files/clarion_www_poweringafricatanzania_com/pdfs/nep_2.0_ethiopia.pdf

  • Mondal, M. A. H., Bryan, E., Ringler, C., & Rosegrant, M. (2017). Ethiopian power sector development: Renewable based universal electricity access and export strategies. Renewable and Sustainable Energy Reviews, 75(November 2016), 11–20. https://doi.org/10.1016/j.rser.2016.10.041

    Article  Google Scholar 

  • Moreira, L. L., Schwamback, D., & Rigo, D. (2018). Sensitivity analysis of the soil and water assessment tools ( SWAT ) model in streamflow modeling in a rural river basin. Journal of Applied Science. https://doi.org/10.4136/1980-993X

  • Othman, A. A., Al-maamar, A. F., Ali, D., Amin, M., Liesenberg, V., Hasan, S. E., Obaid, A. K., & Al-quraishi, A. M. F. (2020). GIS-based modeling for selection of dam sites in the Kurdistan Region , Iraq. T. J. Geo-Inf. 2020. https://doi.org/10.3390/ijgi9040244

  • Pandey, A., Lalrempuia, D., & Jain, S. K. (2015). Assessment of hydropower potential using spatial technology and SWAT modelling in the Mat River, southern Mizoram India. Hydrological Sciences Journal, 60(10), 1651–1665. https://doi.org/10.1080/02626667.2014.943669

    Article  Google Scholar 

  • Ritchie, H. (2019). Access to Energy - Our World in Data. OurWorldInData.Org. https://ourworldindata.org/energy-access

  • Rospriandana, N., & Fujii, M. (2017). Assessment of small hydropower potential in the Ciwidey subwatershed, Indonesia: A GIS and hydrological modeling approach. Hydrological Research Letters, 11(1), 6–11. https://doi.org/10.3178/hrl.11.6

    Article  Google Scholar 

  • Sammartano, V., Liuzzo, L., & Freni, G. (2019). Identification of potential locations for run-of-river hydropower plants using a GIS-based procedure. Energies, 12(18), 1–20. https://doi.org/10.3390/en12183446

    Article  Google Scholar 

  • Sao, D., Kato, T., Le Hoang, Tu., Thouk, P., Fitriyah, A., & Oeurng, C. (2020). Water Evaluation of different objective functions used in the SUFI-2 calibration process of SWAT-CUP on water balance analysis: a case study of the Pursat River Basin Cambodia. Water, 12(2901), 1–22.

    Google Scholar 

  • Schuol, J., Abbaspour, K. C., Srinivasan, R., & Yang, H. (2008). Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology, 352(1–2), 30–49. https://doi.org/10.1016/j.jhydrol.2007.12.025

    Article  Google Scholar 

  • Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data i ~ j ~. 1968 ACM National Conf., New York, 517–524.

  • Sloboda, M., & Swayne, D. (2011). Autocalibration of environmental process models using a PAC learning hypothesis. In IFIP Advances in Information and Communication Technology, 359 AICT, 528–534. https://doi.org/10.1007/978-3-642-22285-6_57

  • Swain, J. B., & Patra, K. C. (2017). Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology, 554, 420–433. https://doi.org/10.1016/j.jhydrol.2017.08.054

    Article  Google Scholar 

  • Tegegne, G., Kim, Y. O., Seo, S. B., & Kim, Y. (2019). Hydrological modelling uncertainty analysis for different flow quantiles: A case study in two hydro-geographically different watersheds. Hydrological Sciences Journal, 64(4), 473–489. https://doi.org/10.1080/02626667.2019.1587562

    Article  Google Scholar 

  • Teshome, A., Tibebu, Y., & Addis, E. (2020). Assessment of hydropower potential using geospatial technology in a case study of Guna-Tana Landscape Upper Abay Basin Ethiopia. Research Square. https://doi.org/10.21203/rs.3.rs-63615/v1

    Article  Google Scholar 

  • Thavhana, M. P., Savage, M. J., & Moeletsi, M. E. (2018). SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa. Physics and Chemistry of the Earth, 105, 115–124. https://doi.org/10.1016/j.pce.2018.03.012

    Article  Google Scholar 

  • Thin, K. K., Zin, W. W., San, Z. M. L. T., Kawasaki, A., Moiz, A., & Bhagabati, S. S. (2020). Estimation of run-of-river hydropower potential in the myitnge river basin. Journal of Disaster Research, 15(3), 267–276. https://doi.org/10.20965/jdr.2020.p0267

  • Tian, Y., Zhang, F., Yuan, Z., Che, Z., & Zafetti, N. (2020). Assessment power generation potential of small hydropower plants using GIS software. Energy Reports, 6, 1393–1404. https://doi.org/10.1016/j.egyr.2020.05.023

    Article  Google Scholar 

  • Vogel, R. M., & Fennessey, N. M. (1995). Flow Duration Curves Ii: A review of applications in water resources planning. JAWRA Journal of the American Water Resources Association, 31(6), 1029–1039. https://doi.org/10.1111/j.1752-1688.1995.tb03419.x

    Article  Google Scholar 

  • Winchell, M., Srinivasan, R., Di Luzio, M., & Arnold, J. (2013). ArcSWAT Interface For SWAT2012: User’s Guide. In Texas Agricultural Experiment Station and United States Department of Agriculture, Temple, TX.

  • World Bank. (2015). World Development Indicators | The World Bank Group A to Z 2015. In World Bank Group elibrary. https://elibrary.worldbank.org/doi/pdf/10.1596/978-1-4648-0382-6_world_development_indicators

  • Zaidi, A. Z., & Khan, M. (2018). Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models. Renewable and Sustainable Energy Reviews, 89(October 2017), 106–116. https://doi.org/10.1016/j.rser.2018.02.025

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Addis Ababa Science and Technology University (AASTU) for providing the facilities used in this study.

Funding

This research received no external funding. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tegegne.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 642 kb)

Supplementary file2 (XLSX 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshe, A., Tegegne, G. Assessment of run-of-river hydropower potential in the data-scarce region, Omo-Gibe Basin, Ethiopia. Int J Energ Water Res 6, 531–542 (2022). https://doi.org/10.1007/s42108-022-00192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-022-00192-2

Keywords

Navigation