Skip to main content

Advertisement

Log in

Integrated geoelectrics and hydrogeochemistry investigation for potential groundwater contamination around a reclaimed dumpsite in Taraa, Ogbomoso, Southwestern Nigeria

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

An open dumpsite in Ogbomoso, Southwestern Nigeria was reclaimed to accommodate residential buildings due to increased population. Hence, possible groundwater contamination was investigated using electrical resistivity and hydrogeochemistry methods to ascertain the degree of potability of groundwater in the area. Twenty-two (22) depth sounding data were quantitatively interpreted along four traverses. The final layer parameters (resistivities and thicknesses) were used to construct geoelectric sections. Two-dimensional resistivity structures were generated along the traverses using dippro™ software package. Data from physicochemical properties and concentrations of anions, cations, and heavy metals of groundwater samples from nine (9) hand-dug wells around the dumpsite were determined and compared with World Health Organisation and Nigerian Industrial Standard baseline for potable water. The geoelectric strata identified were topsoil, laterite, weathered basement, partly weathered/fractured basement and fresh basement with layer resistivities and thicknesses between 11 and 493, 222 and 681, 6.0 and 369, 5.0 and 422, 558 and 53,037 Ωm; 0.3 and 3.0, 0.8 and 0.9, 7.7 and 17.5, 12 and 20 m thick, respectively. Depth to rock-head was between 2.0 and 20 m. Zones of relatively low-resistivity values (6–22 Ωm) suspected to be contaminant plumes at 0–6 m depth beneath the dumpsite were delineated. Concentrations (ppm) of anions, cations and hydrogeochemical parameters in the groundwater samples conformed to threshold for potable water, while excess ionic concentrations of Ni (av. 038), Cd (av. 0.03) and As (av. 0.02) were obtained in the groundwater samples. Further analyses showed that laterally dispersed of ions was possible at about 3–6 m depth. The concentration of elemental ions obtained in the water samples, however, portends potential groundwater contamination in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abu-Zeid, N., Bianchini, G., Santarato, G., & Vaccaro, C. (2004). Geochemical characterization and geophysical mapping of landfill leachates: the Marozzo Canal case study (NE Italy). Environmental Geology, 45, 439–447.

    Article  CAS  Google Scholar 

  • Abuloye, A. P., Nevo, A. O., Eludoyin, O. M., Popoola, K. S., & Awotoye, O. O. (2017). An assessment of effective temperature, relative strain index and dew point temperature over Southwest Nigeria. Journal of Climatology Weather Forecasting, 5, 192. https://doi.org/10.4172/2332-2594.1000192

    Article  Google Scholar 

  • Acworth, R. I. (1987). The development of crystalline basement aquifers in a tropical environment. Q. J. Eng. Geol. Hydrogeol., 20, 265–272.

  • Acworth, I. (2001). The electrical image method compared with resistivity sounding and electromagnetic profiling for investigation in areas of complex geology: a case study from basement areas in Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18, 25–34.

    Google Scholar 

  • Adebayo, A. S., Ariyibi, E. A., Awoyemi, M. O., & Onyedim, G. C. (2014). Environmental assessment of old domestic dump site using 2D electrical resistivity imaging: a case study from Olubonku Dump Site in Ede Osun State, Southwestern, Nigeria. Arabian Journal of Geosciences, 8(6), 4075–4081. https://doi.org/10.1007/s12517-014-1496-6

    Article  Google Scholar 

  • Adepelumi, A. A., Ako, B. D., Afolabi, O., & Arubayi, J. B. (2005). Delineation of contamination plume around oxidation sewage-ponds in Southwestern Nigeria. Environmental Geology, 48(8), 1137–1146.

    Article  CAS  Google Scholar 

  • Adepelumi, A. A., Ako, B. D., & Ajayi, T. R. (2001). Groundwater contamination in the basement complex area of Ile-Ife Southwestern Nigeria: a case study using electrical resistivity method. Hydrogelogy Journal, 9, 61–62.

    Google Scholar 

  • Afolabi, O. A., Kolawole, L. L., Abimbola, A. F., Olatunji, A. S., & Ajibade, O. M. (2013). Preliminary study of the geology and structural trends of lower proterozoic basement rocks in Ogbomoso, SW Nigeria. Journal of Environment and Earth Sciences, 3(8), 82–95.

    Google Scholar 

  • Ako, B. D., & Olorunfemi, M. O. (1989). Geoelectric survey for groundwater in the Newer basalts of Vom, Plateaus State. Journal of Mining and Geology, 25(1 & 2), 247–250.

    Google Scholar 

  • Amidu, S. A., & Olayinka, A. I. (2006). Environmental assessment of sewage disposal systems using 2D electrical- resistivity imaging and geochemical analysis: a case study from Ibadan Southwestern Nigeria. THe Geological Society of America: Environmental and Engineering Geoscience, 12(3), 261–272.

    Google Scholar 

  • Ariyo, S. O., & Enikanoselu, E. M. (2007). Integrated use of geoelectrical imaging and geochemical analysis in the environmental impact assessment of Egbe dumpsite in Ijebu-Igbo Area, Southwestern Nigeria. Continental Journal of Earth Sciences, 1, 11–17.

    Google Scholar 

  • Baba, A. (2003). Geochemical Assessment of Environmental effects of ash from Yatagan (Mugla Turkey) Thermal power plant. Water, Air, and Soil Pollution, 144, 3–18.

    Article  CAS  Google Scholar 

  • Badmus, B. S., Odewande, A. A., Ayolabi, E. A., & Ayodele, T. (2009). Experimental investigation of leachate contamination of groundwater exploration in Basement Complex Area. Journal of Natural Sciences and Engineering Technology, 8(1), 11–15.

    Google Scholar 

  • Bayode, S., Omosuyi, G. O., Mogaji, K. A., & Adebayo, S. T. (2011). Geoelectric delineation of structurally-controlled leachate plume around Otutubiosun Dumpsite, Akure, Southwestern Nigeria. J Emerg Trends Eng Appl Sci (JETEAS), 2(6), 987–992.

    CAS  Google Scholar 

  • Bayowa, O. G., Akinfotire, O. Y., & Onipede, O. K. (2014). Electrical resistivity investigation for the assessment of groundwater contaminant plume flow direction around a sewage pond in Ile-Ife, Southwestern Nigeria. Science Focus, 19(1), 11–23.

    Google Scholar 

  • Bayowa, O. G., Falebita, D. E., Olorunfemi, M. O., & Adepelumi, A. A. (2012). Groundwater contamination prediction using finite element derived geoelectric parameters constrained by chemical analysis around a sewage site, southwestern Nigeria. International Journal of Geosciences, 3, 404–409.

    Article  CAS  Google Scholar 

  • Bayowa, O. G., Falebita, D. E., & Raheem, O. A. (2015). Surface DC resistivity survey of contamination beneath Ido-Osun dumpsite, Southwestern Nigeria. Geofisica Internacional, 54(4), 343–352.

    Google Scholar 

  • Benson, R., Glaccum, R., and Noel, M. (1983). Geophysical techniques for sensing buried waste and waste migration. Environ Monitor Syst Lab Off Res Develop. US Environ Protect Ag, Las Vegas, NV, Rep 68-03-3050.

  • Buselli, G., & Lu, K. (2001). Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. Journal of Applied Geophysics, 48, 11–23.

    Article  Google Scholar 

  • Christoph, G., & Dermietzel, J. (2000). The impact of a contaminated lignite seam on groundwater quality in the aquifer system of the Bitterfeld Region, modeling of groundwater contamination. Water, Air, and Soil Pollution, 122, 421–431.

    Article  CAS  Google Scholar 

  • Clark, I. D. (2015). Groundwater geochemistry and isotopes (pp. 33487–42742). Boca Raton, FL: Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300.

    Book  Google Scholar 

  • Dipro for Windows (2001). DiproTM version 4.0 Processing and interpretation software for dipole–dipole electrical resistivity data. KIGAM, Daejon, South Korea.

  • Ebraheem, A. M., Senosy, M. M., & Dahad, K. A. (1997). Geoelectric and hydrogeochemical studies for delineating ground-water contamination due to salt-water intrusion in the northern part of the Nile Delta, Egypt. Groundwater, 35(2), 216–222.

    Article  CAS  Google Scholar 

  • Ehirim, C. N., Ebeniro, J. O., & Olanegan, O. P. (2009). A geophysical investigation of solid waste landfill using 2D resistivity imaging and vertical electrical sounding methods in Port Harcourt Municipality, Rivers State, Nigeria. Pacific Journal of Science and Technology, 10(2), 604–613.

    Google Scholar 

  • Enikanselu, P. A. (2008). Detection and monitoring of dumpsite-induced groundwater contamination using resistivity method. The Pacific Journal of Science and Technology, 9(1), 254–262.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (pp. 1–604). Prentice-Hall.

  • Frohlich, R. K., & Urish, D. W. (2002). The use of geoelectrics and test wells for the assessment of groundwater quality of a coastal industrial site. Journal of Applied Geophysics, 50, 261–278.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  CAS  Google Scholar 

  • Hughes, L., Figgins, S., & Tinlin, R. (1989). The use of electrical geophysics in groundwater exploration and mapping groundwater contamination. In: Proc Explor ’87. Ont Geol Surv Spec., 665.

  • Ikem, A., Osibanjo, O., Sridhar, M. K. C., & Sobande, A. (2002). Evaluation of groundwater quality characteristic near two waste sites in Ibadan and Lagos, Nigeria. Water, Air and Soil Pollution, 140, 307–333.

    Article  CAS  Google Scholar 

  • Kayabali, K., Yuksel, F. A., & Yeken, T. (1998). Integrated use of hydrochemistry and resistivity methods in groundwater contamination caused by a recently closed solid waste site. Environmental Geology, 36(3–4), 227–234. https://doi.org/10.1007/s002540050339

    Article  CAS  Google Scholar 

  • Kearey, P., & Brooks, M. (1984). An introduction to geophysical exploration (pp. 198–217). Blackwell Scientific Publication.

  • Kim, K., Rajmohan, N., Kim, H., Kim, S., Hwang, G., Yun, S., Gu, B., Cho, M., & Lee, S. (2005). Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: a case study in Namwon, Korea. Geochemical Journal, 39, 357–369.

    Article  CAS  Google Scholar 

  • Kumar, S. K., Logeshkumaran, A., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2014). Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Applied Water Science, 5, 335–343. https://doi.org/10.1007/s13201-014-0196-4

    Article  CAS  Google Scholar 

  • Lowrie, W. (2007). Fundamentals of geophysics (pp. 1–383). Cambridge University Press.

  • Matias, M. S., Marques Da Silva, M., Ferreira, P., & Ramalho, E. (1994). A geophysical and hydrogeological study of aquifers contamination by a landfill. Journal of Applied Geophysics, 32, 155–162.

    Article  Google Scholar 

  • Mazac, O., Kelly, W. E., & Landa, I. (1987). Surface geoelectrics for groundwater pollution and protection studies. Journal of Hydrology, 93, 277–294.

    Article  CAS  Google Scholar 

  • Mooney, H. M., & Wetzel, W. (1954). Master curves for a two, three and four layer earth (p. 145). Minneapolis, MM: Univ. of Minnesota Press.

    Google Scholar 

  • Nigerian Industrial Standard (2015). Nigerian standard for drinking water quality

  • Obaje, N. G., Attah, D. O., Opeloye, S. A., & Moumount, A. (2006). Geochemical evaluation of the hydrocarbon prospects of sedimentary basins in Northern Nigeria. Geochem. J., 40, 227–243.

    Article  CAS  Google Scholar 

  • Obaje, N. G. (2009). Geology of mineral resources in Nigeria (pp. 1–221). Germany: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92685-6

    Book  Google Scholar 

  • Obase, K. O., Olorunfemi, M. O., & Akintorinwa, O. J. (2009). Geophysical and hydro chemical investigation of the area around a waste dump site in Ile-Ife, Southwestern Nigeria. Global Journal of Geological Sciences, 7(1), 47–54.

    Article  CAS  Google Scholar 

  • Ojo, J. S., Olorunfemi, M. O., Bayode, S., Akintorinwa, O. J., Omosuyi, G. O., & Akinluyi, F. O. (2014). Constraint map for landfill site selection in Akure Metropolis Southwestern Nigeria. Ife Journal of Science, 16(2), 405–416.

    Google Scholar 

  • Olla, T. A., Akinlalu, A. A., Olayanju, G. M., Adelusi, A. O., & Adiat, K. A. (2015). Geophysical and hydrochemical investigation of a municipal dumpsite in Ibadan, Southwest Nigeria. Journal of Environment and Earth Science, 5(14), 99–112.

    Google Scholar 

  • Olorunfemi, M. O., & Fasuyi, S. A. (1993). Aquifer types and the geoelectric/ hydrogeologic characteristicsof part of the central Basement terrain of Nigeria (Niger State). Journal of African Earth Sciences, 16(3), 309–317.

    Article  Google Scholar 

  • Oni, A. G., Adediran, T. O., Olorunfemi, M. O., Eniola, P. J., & Adewale, E. J. (2020). Evaluation of the groundwater potential of Modomo Community in Ile-Ife, Southwest Nigeria, using integrated Geophysical Techniques. Sustainable Water Resources Management, 6(6), 1–18. https://doi.org/10.1007/s40899-020-00467-8

    Article  Google Scholar 

  • Perez, J. M. S., Antiguedad, I., Arrate, I., Linares, C. G., & Morelld, I. (2003). The Influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: a case study. Science of the Total Environment, 317, 173–187.

    Article  Google Scholar 

  • Piper, A. M. (1953). A graphic procedure in the geochemical interpretation of water analysis. American Geophysical Union Transactions, 25(105), 914–923. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Rahaman, M. A. (1976). Review of the basement geology of Southwest Nigeria, Geology of Nigeria. In C. A. Kogbe (Ed.), Geology of Nigeria (pp. 41–58). Elizabethan Publishing.

  • Rahaman, M. A. (1988). Recent advances in the study of the basement complex of Nigeria. Precambrian Geology of Nigeria, G. S. N, pp.11–41

  • Rainwater, F.H. and Thatcher, L.L. (1960). Methods for collection and analysis of water samples. Geological Survey Water-Supply Paper 1454, Washington, U.S. Govt. Print off. pp.301

  • Schluter, T. (2006). Geological atlas of Africa (pp. 1–272). Germany: Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • Schulmeister, M. K., Butler, J. J., Healey, J. M., Zheng, L., Wysocki, D. A., & McCall, G. W. (2003). Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Ground Water Monitoring & Remediation, 23(3), 52–62.

    Article  Google Scholar 

  • Sharma, P. V. (2004). Environmental and engineering geophysics (pp. 1–475). Cambridge University Press.

  • Telford, W. M., Geldart, L. P., & Sheriff, R. A. (1990). Applied geophysics (2nd ed., pp. 553–770). Cambridge Univ. Press.

  • Todd, D. K. (1980). Groundwater hydrology. Wiley.

  • WHO, UNEP, GEMS. (1989). Global freshwater quality. Alden Press.

  • World Health Organization (WHO), (2004). Guideline for drinking water quality. “Lenntech water treatment and air purification”. Holding: Rotterdamseweg.

Download references

Acknowledgements

The acting Head of Department, Department of Earth Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria is appreciated for allowing the use of SAS 1000 Terammeter during the geoelectric data acquisition stage. Also, the inhabitants of Taara (the evolving residential area) are acknowledged for creating enabling environment for our data acquisition teams in the area.

Funding

This work did not receive any specific grant from funding agencies in the public, commercial and not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

OGB and OAA designed and supervised the study. OGB, OAA and FOA formulated suitable methods used in the study. AOO, IOA and AWM anchored the data acquisition. OGB, OAA and FOA handled the literature review. FOA, AOO and IOA analyzed and interpreted the data. IOA and AWM produced the figures. OGB prepared the first manuscript draft. OGB, OAA, FOA, AOO, IOA and AWM prepared the final version of the manuscript and approved it for submission.

Corresponding author

Correspondence to O. G. Bayowa.

Ethics declarations

Conflict of interest

We declared that there are no any conflicts of interest in the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayowa, O.G., Afolabi, O.A., Akinluyi, F.O. et al. Integrated geoelectrics and hydrogeochemistry investigation for potential groundwater contamination around a reclaimed dumpsite in Taraa, Ogbomoso, Southwestern Nigeria. Int J Energ Water Res 7, 133–154 (2023). https://doi.org/10.1007/s42108-021-00167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-021-00167-9

Keywords

Navigation