Skip to main content
Log in

Solvent-free deoxygenation of low-cost fat to produce diesel-like hydrocarbons over Ni–MoS2/Al2O3–TiO2 heterogenized catalyst

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

This research presents the conceptual clarification for the waste chicken fat catalytic deoxygenation as a feedstock for high-quality green diesel hydrocarbon fuel production. For the first time, the deoxygenation catalytic runs were executed over Ni–MoS2/Al2O3–(15%) TiO2 catalytic system in a fixed bed down flow reactor at reaction temperatures of 400–450 °C, liquid hourly space velocity of 1.0–4.0 h−1, H2 pressure of 6.0 MPa and H2/Feedstock of 600 v/v. The principal characterization tools such as Fourier transform infrared spectroscopy, X-ray diffraction and surface area were employed for studying the physicochemical properties of the fresh NiO–MoO3/Al2O3–(15%) TiO2 and Ni–MoS2/Al2O3–(15%) TiO2 catalysts. Meanwhile, the mentioned tools were used for the characterization of spent and regenerated Ni–MoS2/Al2O3–(15%) TiO2 catalysts. The conversion, product yield and the impact of varying the processing conditions on the deoxygenation pathways, including decarbonylation/decarboxylation and hydrodeoxygenation, were investigated. The potential impacts of the catalytic system recovery and recycling were also considered. The results obtained demonstrate that increasing the reaction temperature increases the percent of conversion toward the light hydrocarbons (gasoline/kerosene range) production while reduces the required product yield (diesel range, C16–C18) with slight influence for increasing the liquid hourly space velocity from 1 to 4 h−1. In addition, the oxygen removal from waste chicken fat by hydrodeoxygenation mechanism was favored at a low reaction temperature of 400 ºC, while its removal by decarboxylation and decarbonylation mechanisms was enhanced by increasing the reaction temperature above 400 ºC. The reaction kinetics study reveals that the deoxygenation reaction follows the second-order mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WCF:

Waste chicken fat

LHSV:

Liquid hourly space velocity

MPa:

Megapascal

ASTM:

American Society for Testing and Materials

FTIR:

Fourier Transform Infrared

XRD:

X-ray diffraction

OLPs:

Organic liquid products

GC:

Gas chromatography

FID:

Flame ionization detector

TCD:

Thermal conductivity detector

SBET :

Brunauer–Emmett–Teller method

HDO:

Hydrodeoxygenation

DCO:

Decarbonylation

DCO2 :

Decarboxylation

References

  • Abbasi-Shavazi, M. (2020). Review for “Divergent Heterogeneities in Iranian Migration in France: Semantic and Theoretical Limitations of Diaspora.” Wiley.

    Google Scholar 

  • Ajala, E. O., Aberuagba, F., Olaniyan, A. M., Ajala, M. A., & Sunmonu, M. O. (2017). Optimization of a two stage process for biodiesel production from shea butter using response surface methodology. Egyptian Journal of Petroleum, 26(4), 943–955.

    Article  Google Scholar 

  • Aliana-Nasharuddin, N., Asikin-Mijan, N., Abdulkareem-Alsultan, G., Saiman, M. I., Alharthi, F. A., Alghamdi, A. A., & Taufiq-Yap, Y. H. (2020). Production of green diesel from catalytic deoxygenation of chicken fat oil over a series binary metal oxide-supported MWCNTs. RSC Advances, 10(2), 626–642.

    Article  CAS  Google Scholar 

  • Ameen, M., Azizan, M. T., Yusup, S., Ramli, A., & Yasir, M. (2017). Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production. Renewable and Sustainable Energy Reviews, 80, 1072–1088.

    Article  CAS  Google Scholar 

  • Amin, A., Gadallah, A., El Morsi, A. K., El-Ibiari, N. N., & El-Diwani, G. I. (2016). Experimental and empirical study of diesel and castor biodiesel blending effect, on kinematic viscosity, density and calorific value. Egyptian Journal of Petroleum, 25(4), 509–514.

    Article  Google Scholar 

  • Araki, Y., Honna, K., & Shimada, H. (2002). Formation and catalytic properties of edge-bonded molybdenum sulfide catalysts on TiO2. Journal of Catalysis, 207(2), 361–370.

    Article  CAS  Google Scholar 

  • Awadallah, A. E., Mostafa, M. S., Aboul-Enein, A. A., & Hanafi, S. A. (2014). Hydrogen production via methane decomposition over Al2O3–TiO2 binary oxides supported Ni catalysts: Effect of Ti content on the catalytic efficiency. Fuel, 129, 68–77.

    Article  CAS  Google Scholar 

  • Badawi, M., Paul, J. F., Cristol, S., Payen, E., Romero, Y., Richard, F., Brunet, S., Lambert, D., Portier, X., Popov, A., Kondratieva, E., Goupil, J. M., El Fallah, J., Gilson, J. P., Mariey, L., Travert, A., & Maugé, F. (2011). Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: A combined experimental and DFT study. Journal of Catalysis, 282(1), 155–164.

    Article  CAS  Google Scholar 

  • Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52(2), 858–875.

    Article  CAS  Google Scholar 

  • Bulavchenko, O. A., Cherepanova, S. V., Malakhov, V. V., Dovlitova, L. S., Ishchenko, A. V., & Tsybulya, S. V. (2009). In situ XRD study of nanocrystalline cobalt oxide reduction. Kinetics and Catalysis, 50(2), 192–198.

    Article  CAS  Google Scholar 

  • Cecílio, A. A., Pulcinelli, S. H., Santilli, C. V., Maniette, Y., & da Silva, V. T. (2004). Improvement of the Mo/TiO2-Al2O3Catalyst by the Control of the Sol-Gel Synthesis. Journal of Sol-Gel Science and Technology, 31(1–3), 87–93.

    Article  Google Scholar 

  • Charusiri, W., & Vitidsant, T. (2005). Kinetic study of used vegetable oil to liquid fuels over sulfated zirconia. Energy & Fuels, 19(5), 1783–1789.

    Article  CAS  Google Scholar 

  • Chen, X., Dong, Y., Zhao, C., & Zhao, T. (2008). Surface properties of TiO2/Al2O3 to synthesize methyl propyl carbonate via gas-phase transesterification. Energy & Fuels, 22(6), 3571–3574.

    Article  CAS  Google Scholar 

  • Cheng, S., Wei, L., Zhao, X., & Julson, J. (2016). Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading. Catalysts, 6(12), 195.

    Article  Google Scholar 

  • Dhar, G. M., Srinivas, B. N., Rana, M. S., Kumar, M., & Maity, S. K. (2003). Mixed oxide supported hydrodesulfurization catalysts—a review. Catalysis Today, 86(1–4), 45–60.

    Article  CAS  Google Scholar 

  • Douvartzides, S. L., Charisiou, N. D., Papageridis, K. N., & Goula, M. A. (2019). Green diesel: biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies, 12(5), 809.

    Article  CAS  Google Scholar 

  • El Khatib, S. A., Hanafi, S. A., Barakat, Y., & Al-Amrousi, E. F. (2018). Hydrotreating rice bran oil for biofuel production. Egyptian Journal of Petroleum, 27(4), 1325–1331.

    Article  Google Scholar 

  • El-Sawy, M. S., Hanafi, S. A., Ashour, F., & Aboul-Fotouh, T. M. (2020). Co-hydroprocessing and hydrocracking of alternative feed mixture (vacuum gas oil/waste lubricating oil/waste cooking oil) with the aim of producing high quality fuels. Fuel, 269, 117437.

    Article  CAS  Google Scholar 

  • Ereña, J., Sierra, I., Olazar, M., Gayubo, A. G., & Aguayo, A. T. (2008). Deactivation of a CuO−ZnO−Al2O3/γ-Al2O3Catalyst in the Synthesis of Dimethyl Ether. Industrial & Engineering Chemistry Research, 47(7), 2238–2247.

    Article  Google Scholar 

  • Foltynowicz, Z., & Sarbak, Z. (1990). Effect of pretreatment on textural characteristics of an alumina-supported nickel-tungsten catalyst. Materials Chemistry and Physics, 24(5), 443–456.

    Article  CAS  Google Scholar 

  • Gamal, M. S., Asikin-Mijan, N., Khalit, W. N. A. W., Arumugam, M., Izham, S. M., & Taufiq-Yap, Y. H. (2020). Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 208, 106519.

    Article  CAS  Google Scholar 

  • Hanafi, S. A., Elmelawy, M. S., Shalaby, N. H., El-Syed, H. A., Eshaq, G., & Mostafa, M. S. (2016). Hydrocracking of waste chicken fat as a cost effective feedstock for renewable fuel production: A kinetic study. Egyptian Journal of Petroleum, 25(4), 531–537.

    Article  Google Scholar 

  • Kaewmeesri, R., Srifa, A., Itthibenchapong, V., & Faungnawakij, K. (2015). Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: Effect of water and free fatty acid content. Energy & Fuels, 29(2), 833–840.

    Article  CAS  Google Scholar 

  • Khatib, S. A. E., Hanafi, S. A., Areeaf, M. H., & Al-Amrousi, E. F. (2014). Optimizing the biofuel production by hydrotreating Jojoba oil. International Journal of Academic Research, 6(3), 194–201.

    Article  Google Scholar 

  • Kim, S. K., Brand, S., Lee, H.-S., Kim, Y., & Kim, J. (2013). Production of renewable diesel by hydrotreatment of soybean oil: Effect of reaction parameters. Chemical Engineering Journal, 228, 114–123.

    Article  CAS  Google Scholar 

  • Li, X., Luo, X., Jin, Y., Li, J., Zhang, H., Zhang, A., & Xie, J. (2018). Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels. Renewable and Sustainable Energy Reviews, 82, 3762–3797.

    Article  CAS  Google Scholar 

  • Luo, S., He, S., Li, X., Li, J., Bi, W., & Sun, C. (2015). Combustion kinetics of the coke on deactivated dehydrogenation catalysts. Fuel Processing Technology, 129, 156–161.

    Article  CAS  Google Scholar 

  • Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G., & Jensen, A. D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis a: General, 407(1–2), 1–19.

    Article  CAS  Google Scholar 

  • Na, J.-G., Park, Y.-K., Kim, D. I., Oh, Y.-K., Jeon, S. G., Kook, J. W., Shin, J. H., & Lee, S. H. (2015). Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents. Renewable Energy, 81, 779–784.

    Article  CAS  Google Scholar 

  • Nigatu Gebremariam, S., & Mario Marchetti, J. (2017). Biodiesel production technologies: Review. AIMS Energy, 5(3), 425–457.

    Article  Google Scholar 

  • Pieck, C. L., Vera, C. R., Querini, C. A., & Parera, J. M. (2005). Differences in coke burning-off from Pt–Sn/Al2O3 catalyst with oxygen or ozone. Applied Catalysis a: General, 278(2), 173–180.

    Article  CAS  Google Scholar 

  • Popov, A., Kondratieva, E., Mariey, L., Goupil, J. M., El Fallah, J., Gilson, J.-P., Travert, A., & Maugé, F. (2013). Bio-oil hydrodeoxygenation: Adsorption of phenolic compounds on sulfided (Co)Mo catalysts. Journal of Catalysis, 297, 176–186.

    Article  CAS  Google Scholar 

  • Rodseanglung, T., Ratana, T., Phongaksorn, M., & Tungkamania, S. (2015). Effect of TiO2 Incorporated with Al2O3 on the hydrodeoxygenation and hydrodenitrogenation CoMo sulfide catalysts. Energy Procedia, 79, 378–384.

    Article  CAS  Google Scholar 

  • Rosson, E., Sgarbossa, P., Pedrielli, F., Mozzon, M., & Bertani, R. (2020). Bioliquids from raw waste animal fats: An alternative renewable energy source. Biomass Conversion and Biorefinery., 11(5), 1475–1490.

    Article  Google Scholar 

  • Sági, D., Baladincz, P., Varga, Z., & Hancsók, J. (2016). Co-processing of FCC light cycle oil and waste animal fats with straight run gas oil fraction. Journal of Cleaner Production, 111, 34–41.

    Article  Google Scholar 

  • Satyarthi, J. K., & Srinivas, D. (2011). Fourier transform infrared spectroscopic method for monitoring hydroprocessing of vegetable oils to produce hydrocarbon-based biofuel. Energy & Fuels, 25(7), 3318–3322.

    Article  CAS  Google Scholar 

  • Shalaby, N. H., Hanafi, S. A., Hassan, S. A., & Elmelawy, M. S. (2018). Can mesoporous TiO2-Al2O3-supported NiMoS OR CoMoS effectively perform in ultra-deep desulfurization of gas oil? Petroleum Chemistry, 58(5), 387–394.

    Article  CAS  Google Scholar 

  • Sharma, A. K., Desnavi, S., Dixit, C., Varshney, U., & Sharma, A. (2015). Extraction of nickel nanoparticles from electroplating waste and their application in production of bio-diesel from biowaste. International Journal of Chemical Engineering and Applications, 6(3), 156–159.

    Article  CAS  Google Scholar 

  • Sonthalia, A., & Kumar, N. (2019). Comparison of fuel characteristics of hydrotreated waste cooking oil with its biodiesel and fossil diesel. Environmental Science and Pollution Research, 28(10), 11824–11834.

    Article  Google Scholar 

  • Sorrell, S., Speirs, J., Bentley, R., Brandt, A., & Miller, R. (2010). Global oil depletion: A review of the evidence. Energy Policy, 38(9), 5290–5295.

    Article  Google Scholar 

  • Swanson, D. & Pintér, L. (2007). Governance Structures for National Sustainable Development Strategies. Organisation for Economic Co-Operation and Development (OECD).

  • van Haandel, L., Bremmer, G. M., Hensen, E. J. M., & Weber, T. (2016). Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts. Journal of Catalysis, 342, 27–39.

    Article  Google Scholar 

  • van Vuuren, D. P., van Vliet, J., & Stehfest, E. (2009). Future bio-energy potential under various natural constraints. Energy Policy, 37(11), 4220–4230.

    Article  Google Scholar 

  • Wang, B., Hu, Z., Liu, S., Jiang, M., Yao, Y., Li, Z., & Ma, X. (2014). Effect of sulphidation temperature on the performance of NiO–MoO3/γ-Al2O3 catalysts for sulphur-resistant methanation. RSC Advances, 4(99), 56174–56182.

    Article  CAS  Google Scholar 

  • Zhang, D., Liu, W.-Q., Liu, Y.-A., Etim, U. J., Liu, X.-M., & Yan, Z.-F. (2017). Pore confinement effect of MoO3/Al2O3 catalyst for deep hydrodesulfurization. Chemical Engineering Journal, 330, 706–717.

    Article  CAS  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan A. Ahmed.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanafi, S.A., Elmelawy, M.S. & Ahmed, H.A. Solvent-free deoxygenation of low-cost fat to produce diesel-like hydrocarbons over Ni–MoS2/Al2O3–TiO2 heterogenized catalyst. Int J Energ Water Res 6, 1–13 (2022). https://doi.org/10.1007/s42108-021-00156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-021-00156-y

Keywords

Navigation