Skip to main content

Hydrogeochemical characteristics and water quality assessment in the lake Satopanth Tal, India

Abstract

The current study examines physicochemical parameters and the water quality index and spatial interpolation analysis of water samples collected from the sacred, emerald green snow-fed lakes of Satopanth Tal in Uttarakhand, India. It is near Badrinath, a Hindu pilgrimage site, at an elevation of 4600 m above sea level. The lake is covered with snow between the end of October and May. This is a glacial corrie moraine-dammed lake having a maximum depth of 17.5 m. To determine the suitability of the water for various purposes, thirteen physicochemical parameters were assessed and the water quality was determined. The spatial distribution of the physicochemical parameters throughout the lake was studied using the ArcGIS interpolation tool. The physicochemical parameters and water quality index values showed that the lake's water quality is excellent for domestic purposes based on World Health Organization/Bureau of Indian Standards drinking water standards. The Piper and Johnson plots revealed that the dominance of carbonate weathering contributed major ions to the lake. The sodium adsorption ratio, soluble sodium percentage, magnesium hazard, residual sodium concentration used to evaluating the irrigation water quality index indicated all water samples were good and can be used for irrigation. The lake has so far remained relatively unpolluted. This study will provide more information for future research and long-term management of the sacred lakes by taking corrective action and drafting a development plan.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adimalla, N., Li, P., & Venkatayogi, S. (2018). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environmental Processes, 5, 363–383. https://doi.org/10.1007/s40710-018-0297-4

    CAS  Article  Google Scholar 

  2. Al obaidy, A. H. M., Abid, H. S., & Maulood, B. K. (2010). Application of water quality index for assessment of Dokan Lake ecosystem, Kurdistan region, Iraq. Journal of Water Resource and Protection, 2, 792–798.

    CAS  Article  Google Scholar 

  3. APHA. (2012). Standard methods for examination of water and wastewater (23rd ed.). American Public Health association.

    Google Scholar 

  4. Ayers, R. S., Westcot, D. W., (1989). Salinity problems, Water quality for agriculture. FAO, Rome, Italy, 1–32.

  5. Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index: do we dare? Water Sew Works, 117, 339–343.

    Google Scholar 

  6. Bureau of Indian Standards. (2012). Indian standard specification for drinking water (IS 10500: 2012).

  7. Chandrasekhar, J. S., Lenin, B. K., & Somasekhar, R. K. (2003). Impact of urbanization on Bellandur lake, Bangalore —a case study. Journal of Environmental Biology, 24(3), 223–227.

    Google Scholar 

  8. Deep, A., Gupta, V., Bisht, L., & Kumar, R. (2020). Application of WQI for water quality assessment of high-altitude snow-fed sacred Lake Hemkund, Garhwal Himalaya. Sustain. Water Resources Management., 6, 89. https://doi.org/10.1007/s40899-020-00449-w

    Article  Google Scholar 

  9. Doneen, L. D. (1964). Notes on water quality in agriculture published as a water science and engineering Paper 4001. University of California.

    Google Scholar 

  10. Duan, W., He, B., Nover, D., Yang, G., Chen, W., Meng, H., Zou, S., & Liu, C. (2016). Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods. Sustainability, 8(2), 133. https://doi.org/10.3390/su8020133

    CAS  Article  Google Scholar 

  11. Duan, W., He, B., Chen, Y., Zou, S., Wang, Y., Nover, D., & Yang, G. (2018). Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China. PLoS ONE. https://doi.org/10.1371/journal.pone.0188889

    Article  Google Scholar 

  12. Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69, 123–134. https://doi.org/10.1097/00010694-195002000-00004

    CAS  Article  Google Scholar 

  13. Embaby, A., Razack, M., Lecoz, M., & Porel, G. (2016). Hydrogeochemical assessment of groundwater in the precambrian rocks, South Eastern Desert, Egypt. Journal of Water Resource and Protection, 8, 293–310. https://doi.org/10.4236/jwarp.2016.83025

    CAS  Article  Google Scholar 

  14. Forghani, G., Moore, F., Lee, S., & Qishlaqi, A. (2009). Geochemistry and speciation of metals in sediments of the Maharlu Saline Lake, Shiraz, SW Iran. Environmental Earth Sciences, 59, 173–184.

    CAS  Article  Google Scholar 

  15. Ghislain, T. Y. J. (2012). Evaluation of groundwater suitability for domestic and irrigational purposes: a case Study from Mingoa River Basin, Yaounde, Cameroon. Journal of Water Resource and Protection, 04, 285–293. https://doi.org/10.4236/jwarp.2012.45031

    CAS  Article  Google Scholar 

  16. Gibbs, R. J. (1970). Mechanisms controlling world’s water chemistry. Science, 170, 1088–1090.

    CAS  Article  Google Scholar 

  17. Gnanachandrasamy, G., Dushiyanthan, C., & Jeyavel Rajakumar, T. (2020). Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI). Environment, Development and Sustainability, 22, 759–789. https://doi.org/10.1007/s10668-018-0219-7

    Article  Google Scholar 

  18. Gopal, V., & Joseph, S. (2015). Irrigational quality of Vamanapuram River, Kerala, India. International Journal of Scientific and Engineering Research, 6, 803–811.

    Google Scholar 

  19. Gransee, A., & Führs, H. (2013). Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 368, 5–21. https://doi.org/10.1007/s11104-012-1567-y

    CAS  Article  Google Scholar 

  20. Hem, J.D. (1970). Study and Interpretation of the Chemical Characteristics of Natural Water. 2nd Ed. Geological Survey Water-Supply Paper 1473. United States Department of the Interior. United States Government Printing Office, Washington, D.C.

  21. Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural waters. US Geological Survey Water Supply Paper, 2254, 263.

    Google Scholar 

  22. Horton, R. K. (1965). An index number system for rating water quality. Journal (water Pollution Control Federation), 37, 300–306.

    Google Scholar 

  23. Jiang, Y., Gui, H., Yu, H., Wang, M., Fang, H., Wang, C., Chen, C., Zhang, Y., & Huang, Y. (2020). Hydrochemical characteristics and water quality evaluation of rivers in different regions of cities: a case study of Suzhou City in Northern Anhui Province, China. Water, 12(4), 950. https://doi.org/10.3390/w12040950

    CAS  Article  Google Scholar 

  24. Johnson, (1975). Hydrochemistry in Groundwater exploration, Groundwater Symposium, Bulawano.

  25. Karami, S., Madani, H., Katibeh, H., & Fatehi, A. (2018). Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches. Applied Water Science. https://doi.org/10.1007/s13201-018-0641-x

    Article  Google Scholar 

  26. Kelly, W. P. (1963). Use of saline irrigation water. Soil Science, 95, 355–391.

    Google Scholar 

  27. Khadka, U. R., & Ramanathan, A. L. (2021). Hydrogeochemical analysis of Phewa Lake: a lesser Himalayan Lake in the Pokhara Valley, Nepal. Environment and Natural Resources Journal, 19(1), 68–83. https://doi.org/10.3252/ennrj/19/2020083)68

    Article  Google Scholar 

  28. Kouadra, R., & Demdoum, A. (2020). Hydrogeochemical characteristics of groundwater and quality assessment for the purposes of drinking and irrigation in Bougaa area, Northeastern Algeria. Acta Geochimica, 39, 642–654. https://doi.org/10.1007/s11631-019-00393-3

    CAS  Article  Google Scholar 

  29. Kumar, R., & Sharma, R. C. (2019). Assessment of the water quality of Glacier-fed lake Neel Tal of Garhwal Himalaya, India. Water Science., 33(1), 22–28. https://doi.org/10.1080/11104929.2019.1631554

    Article  Google Scholar 

  30. Li, P., Wu, J., & Qian, H. (2014). Hydrogeochemistry and Quality Assessment of Shallow Groundwater in the Southern Part of the Yellow River Alluvial Plai (Zhongwei Section), Northwest China. Earth Science Research Journal. https://doi.org/10.15446/ESRJ.V18N1.34048

    Article  Google Scholar 

  31. Magesh, N. S., Krishnakumar, S., Chandrasekar, N., & Soundranayagam, J. P. (2013). Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arabian Journal of Geosciences, 6(11), 4179–4189.

    CAS  Article  Google Scholar 

  32. Mallick, J. (2017). Hydrogeochemical characteristics and assessment of water quality in the Al-Saad Lake, Abha Saudi Arabia. Applied Water Science. https://doi.org/10.1007/s13201-017-0553-1

    Article  Google Scholar 

  33. Merdhah, A., & Yassin, A. (2008). Laboratory study and prediction of calcium sulphate at high-salinity formation water. The Open Petroleum Engineering Journal, 1, 62–73. https://doi.org/10.2174/1874834100801010062

    CAS  Article  Google Scholar 

  34. Nagaraju, A., Muralidhar, P., & Sreedhar, Y. (2016). Hydrogeochemistry and Groundwater Quality Assessment of Rapur Area, Andhra Pradesh, South India. Journal of Geoscience and Environment Protection, 4(4), 88–99.

    Article  Google Scholar 

  35. Paliwal, K.V., (1972). Irrigation with saline water, Monogram no. 2 (New series). New Delhi, IARI, p. 198

  36. Pandey, S. K., Singh, A., & Hasnain, S. I. (2001). Hydrochemical characteristics of meltwater draining from Pindari glacier, Kumaon Himalaya. Journal of the Geological Society of India, 57, 519–527.

    CAS  Google Scholar 

  37. Papatheodorou, G., Demopoulou, G., & Lambrakis, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193, 759–776.

    Article  Google Scholar 

  38. Piper, A.M., (1953). A graphic procedure in the geochemical interpretation of water analysis, U.S. Geol. Survey. Groundwater Note.

  39. Pradeep, K., Nepolian, M., Anandhan, P., Chandran, K., & R., Prasanna, M.V., Chidambaram, S.,. (2016). A study on variation in dissolved silica concentration in groundwater of hard rock aquifers in Southeast coast of India. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/121/1/012008

    Article  Google Scholar 

  40. PWD (2013). Geological Investigation Report of Chamoli, Construction Division, Public Work Department, Pokhari, pp. 73–82

  41. Rao, N. S. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Geology, 41(5), 552–562.

    CAS  Article  Google Scholar 

  42. Reyes-Toscano, C. A., Alfaro-Cuevas-Villanueva, R., Cortés-Martínez, R., Morton-Bermea, O., Hernández-Álvarez, E., Buenrostro-Delgado, O., & Ávila-Olivera, J. A. (2020). Hydrogeochemical characteristics and assessment of drinking water quality in the urban area of Zamora, Mexico. Water, 12(2), 556. https://doi.org/10.3390/w12020556

    Article  Google Scholar 

  43. Richard, L.A, (1954). Diagnosis and improvement of saline and alkali soils. Édit. US department of Agriculture, Agricultural Handbook n°60, Washington (USA), 160.

  44. Rosha, R., Subodh, S., Roshan, M. B., Chhatra, M. S., & Smriti, G. (2012). Physico-chemical characterization of gosainkunda lake. Nepal Journal of Science and Technology., 13, 107–114.

    Google Scholar 

  45. Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environmental Geology, 55, 823–835. https://doi.org/10.1007/s00254-007-1034-x

    CAS  Article  Google Scholar 

  46. Sajil Kumar, P. J. (2020). Hydrogeochemical and multivariate statisticalappraisal of pollution sources in the groundwater of the lower Bhavani River basin in Tamil Nadu. Geology, Ecology, and Landscapes, 4(1), 40–51. https://doi.org/10.1080/24749508.2019.1574156

    Article  Google Scholar 

  47. Schoeller, H. (1977). Geochemistry of groundwater. Groundwater studies. An international guide for research and practice (Vol. 15, pp. 1–18). UNESCO, Paris:

    Google Scholar 

  48. Shah, K. A., & Joshi, G. S. (2017). Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7, 1349–1358. https://doi.org/10.1007/s13201-015-0318-7

    CAS  Article  Google Scholar 

  49. Shaikh, H., Gaikwad, H., & Kadam, A. (2020). Hydrogeochemical characterization of groundwater from semiarid region of western India for drinking and agricultural purposes with special reference to water quality index and potential health risks assessment. Applied Water Science, 10, 204. https://doi.org/10.1007/s13201-020-01287-z

    CAS  Article  Google Scholar 

  50. Sharma, R. C., & Kumar, R. (2017). Water quality assessment of sacred glacial Lake Satopanth of Garhwal Himalaya India. Applied Water Science, 7(8), 4757–4764. https://doi.org/10.1007/s13201-017-0638-x

    CAS  Article  Google Scholar 

  51. Sharma, C. M., Kang, S., & Tripathee, L. (2021). Major ions and irrigation water quality assessment of the Nepalese Himalayan rivers. Environment, Development and Sustainability, 23, 2668–2680. https://doi.org/10.1007/s10668-020-00694-1

    Article  Google Scholar 

  52. Steingruber, S. M., Bernasconi, S. M., & Valenti, G. (2021). Climate change-induced changes in the chemistry of a high-altitude mountain lake in the Central Alps. Aquatic Geochemistry, 27, 105–126. https://doi.org/10.1007/s10498-020-09388-6

    CAS  Article  Google Scholar 

  53. Tyagi, S. K., Datta, P. S., & Pruthi, N. K. (2009). Hydrochemical appraisal of groundwater and its suitability in the intensive agricultural area of Muzaffarnagar district, Uttar Pradesh, India. Environmental Geology, 56, 901–912. https://doi.org/10.1007/s00254-008-1190-7

    CAS  Article  Google Scholar 

  54. USSL. (1954). Diagnosis and improvement of salinity and alkaline soil. USDA Hand Book Washington, 120(3124), 800. https://doi.org/10.1126/science.120.3124.800

    Article  Google Scholar 

  55. Vasu, D., Singh, S. K., & Tiwary, P. (2017). Influence of geochemical processes on hydrochemistry and irrigation suitability of groundwater in part of semi-arid Deccan Plateau, India. Applied Water Science, 7, 3803–3815. https://doi.org/10.1007/s13201-017-0528-2

    CAS  Article  Google Scholar 

  56. Vasudevan, S., Selvaganapathy, R., Balamurugan, P., Ramkumar, T., & Kumar, R. S. (2013). Evaluation of hydrogeochemical characteristics and water quality in Kodaikanal Lake, Tamil Nadu, India. Lakes, Rivers and Coastal Wetlands, 1(1), 14–25.

    Google Scholar 

  57. Wang, Q., Dong, S., & Wang, H. (2020). Hydrogeochemical processes and groundwater quality assessment for different aquifers in the Caojiatan coal mine of Ordos Basin, northwestern China. Environmental Earth Sciences, 79, 199. https://doi.org/10.1007/s12665-020-08942-3

    CAS  Article  Google Scholar 

  58. Wang, S., & Dou, H. (1998). Chinese Lake Catalogue. Science Press.

    Google Scholar 

  59. Wilcox, L.V., (1948). The Quality of Water for Irrigation Use. US Department of Agriculture, Technical bulletin, Washington DC, 19 p.

  60. Wilcox, L.V., (1955). Classification and use of irrigation water. US Department of Agriculture, Washington, vol. 969, p. 367

  61. World Health Organization. (2011). Guidelines for drinking-water quality (4th ed.). World Health Organization.

    Google Scholar 

  62. Wu, Z., Zhang, D., Cai, Y., Wang, X., Zhang, L., & Chen, Y. (2017). Water quality assessment based on the water quality index method in Lake Poyang: the largest freshwater lake in China. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-18285-y

    CAS  Article  Google Scholar 

  63. Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment, 612, 914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks DST-SERB (HG) for the financial support for this research (Grant no. SB/DGH-63/2013). The authors also like to thank Dr. S.P Rai Associate Professor, BHU, Varanashi (Former Scientist C at National Institute of Hydrology, Roorkee, India) for his immense support to conduct the analysis in NIH; authors would also like to thank the administration of Annamalai University as well as NIH, Roorkee for the smooth conduct of the documents without any delay. Last but not least the authors would like to thank the Himalayan Trekker Company for their support and help during the trekking period and in the fieldwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vasudevan Sivaprakasam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, S., Vasudevan, S. & Selvaganapathi, R. Hydrogeochemical characteristics and water quality assessment in the lake Satopanth Tal, India. Int J Energ Water Res (2021). https://doi.org/10.1007/s42108-021-00153-1

Download citation

Keywords

  • Satopanth Tal
  • Spatial analysis
  • Hydrogeochemistry
  • Water quality index