Skip to main content

Groundwater—from freshwater source to green energy: an overview from concern to solution

Abstract

Water is probably the most inevitable substance for the survival of life on Earth. Though Earth has an infinite source of water, most of it is of no use since it is saline ocean water. Ignoring the water stored in continental glaciers, the only source of freshwater is groundwater. This resource is now under huge stress due to unplanned and over-use. Now the time has come to take groundwater management as a serious concern. Here, an attempt has been made to capture different issues of groundwater management, its applicability, and limitation in terms of the present state of research. This article discusses the feasibility of groundwater management in terms of groundwater quantity, artificial recharge to aquifer and groundwater quality both chemical and bacteriological. A holistic approach has been adopted to discuss technological advancements to address the groundwater management issues like desalination and membrane filtration, its limitations, and future scope of improvement. Thermal pollution of groundwater and its impact on saline water intrusion to coastal aquifers have been addressed in the discussion. The effect of global climate change on the hydrosphere and its impact on groundwater management have also been incorporated. One of the mitigations to global warming is exploring different sources of green energy. One of them and the most explored options is geothermal energy. The use of geothermal heat for electricity generation and space heating has also been included in the discussion with technological limitations which is always an open area of research.

This is a preview of subscription content, access via your institution.

References

  1. Aggrawal, P. K., Basu, A. R., & Julkarni, K. M. (2003). Comment on ‘Arsenic mobility and groundwater extraction in Bangladesh. Science, 300, 584b.

    Article  Google Scholar 

  2. Amjad, Z. (Ed.). (1993). Reverse Osmosis. Van Nostrand Reinhold.

    Google Scholar 

  3. Anderson, M. P. (2005). Heat as a ground water tracer. Ground Water, 43, 951–968. https://doi.org/10.1111/j.1745-6584.2005.00052.x

    Article  CAS  Google Scholar 

  4. Anderson, M. G., & Burt, T. P. (1978). The role of topography in controlling throughflow generation. Earth Surface Processes., 3, 331–344. https://doi.org/10.1002/esp.3290030402

    Article  Google Scholar 

  5. Anibas, C., Fleckenstein, J. H., Volze, N., Bluis, K., Verhoeven, R., Meire, P., & Batelaan, O. (2009). Transient or steady-state? Using vertical temperature profiles to quantify groundwater–surface water exchange. Hydrological Processes, 23, 2165–2177. https://doi.org/10.1002/hyp.7289

    Article  Google Scholar 

  6. Avery, W. H., & Wu, C. (1994). Renewable Energy from the Ocean (p. 446). Oxford University Press.

    Book  Google Scholar 

  7. Baker, R. W. (2004). Membrane Technology and Applications. Wiley. ISBN: 0-470-85445-6.

    Book  Google Scholar 

  8. Banks, D. (2008). An Introduction to Thermogeology: Ground Source Heating and Cooling. Blackwell Publishing Ltd.

    Book  Google Scholar 

  9. Barbier, E. (1997). Nature and technology of geothermal energy: A review. Renewable and Sustainable Energy Reviews, 1, 1–69.

    Article  CAS  Google Scholar 

  10. Barbier, E. (2002). Geothermal energy technology and current status: An overview. Renewable and Sustainable Energy Reviews, 6, 3–65.

    Article  Google Scholar 

  11. Bataineh, K. M. (2016). Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy. Desalination, 385, 39–52.

    Article  CAS  Google Scholar 

  12. Bayer, P., Saner, D., Bolay, S., Rybach, L., & Blum, P. (2012). Greenhouse gas emission savings of ground source heat pump systems in Europe: A review. Renewable and Sustainable Energy Reviews., 16(2), 1256–1267.

    Article  Google Scholar 

  13. Bear, J., Cheng, A. H., Sorek, S., Ouazar, D., & Herrers, I. (Eds.). (1999). Seawater Intrusion in Coastal Aquifer Concepts, Methods, and Practices. Kluwer Academic Publishers.

    Google Scholar 

  14. Beardsmore, G. R. (2004). The influence of basement on surface heat flow in the Cooper Basin. Exploration Geophysics., 35(4), 23941.

    Article  Google Scholar 

  15. Bechhold, H. (1907). Kolloidstudien mit der Filtrationsmethode. Zeitschrift Für Physikalische Chemie, 60, 257.

    Article  Google Scholar 

  16. Bergman, R., (Ed) (2007). Manual of Water Supply Practices. (M46) (2007). Second Edition. Reverse Osmosis and Nanofiltration. American Water Works Association. Library of Congress Cataloging-in-Publication Data.

  17. Bertani, R. (2005). World geothermal power generation in the period 2001–2005. Geothermics, 34, 651–690.

    Article  Google Scholar 

  18. Bonte, M., Stuyfzand, P. J., Hulsmann, A., & van Beelen, P. (2011). Underground thermal energy storage: Environmental risks and policy developments in the Netherlands and European Union. Ecology and Society, 16(1), 22.

    Article  Google Scholar 

  19. Bottinga, Y. (1969). Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth and Planetary Science Letters, 5, 301–307.

    Article  CAS  Google Scholar 

  20. Bouwer, H. (1985). Waste Water Recharge. Seminar on Artificial Recharge of Ground Water. Central Ground Water Board, Government of India, Ahmedabad, p. 11-1–13-13.

  21. Central Ground Water Board. (2000). Guide on Artificial Recharge to Groundwater. In: Ministry of Water Resources, Government of India, Open file report, New Delhi, India.

  22. Chacko, T., Cole, D. R., & Horita, J. (2001). Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Reviews in Mineralogy and Geochemistry, 43, 1–81.

    Article  CAS  Google Scholar 

  23. Claude, G. (1930). Power from the tropical seas. Mechanical Engineering., 52(12/19), 1039–1044.

    Google Scholar 

  24. Coplen, T. B., Kendall, C., & Hopple, J. (1983). Comparison of stable isotope reference samples. Nature, 302, 236–238.

    Article  CAS  Google Scholar 

  25. Dinçer, I., & Rosen, M. A. (2011). Thermal energy Storage: Systems and Applications (2nd ed.). Wiley.

    Google Scholar 

  26. Dingman, S. L. (2002). Physical Hydrology (2nd ed.). Prentice Hall. ISBN: 0-13-099695-5.

    Google Scholar 

  27. Domenico, A. P., & Schwartz, W. F. (1997). Physical and Chemical Hydrogeology (2nd ed.). Wiley. ISBN: 0-471-59762-7.

    Google Scholar 

  28. Driesner, T. (1997). The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science, 277, 791–794.

    Article  CAS  Google Scholar 

  29. Duffield, W.A., & Sass, J.H. (2003). Geothermal energy-clean power from the Earth's heat. US Geological Survey Circular 1249, p 36.

  30. Ekea, J., Yusufb, A., Adewale Giwab, A., & Sodiqc, A. (2020). The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination. https://doi.org/10.1016/j.desal.2020.114633

    Article  Google Scholar 

  31. Ferry, J. D. (1936). Ultrafilter membranes and ultrafiltration. Chemical Reviews, 18, 373.

    Article  CAS  Google Scholar 

  32. Fetter, C. W. (2001). Applied Hydrogeology (4th ed.). Prentice Hall, Inc.

    Google Scholar 

  33. Fournier, R. O., & Truesdell, A. H. (1973). An empirical Na–K–Ca geothermometer for natural water. Geochimica Et Cosmochimica Acta, 37, 1255–1275.

    Article  CAS  Google Scholar 

  34. Ganguly, S., Bhan, U., Rai, S. K., Mittal, S., Ahluwalia, R. S., & Verma, A. (2019a). An experimental approach to estimate groundwater temperature from 18O fractionation. Groundwater for Sustainable Development., 9, 100257. https://doi.org/10.1016/j.gsd.2019.100257

    Article  Google Scholar 

  35. Ganguly, S., Rai, S. K., Mittal, S., Bhan, U., & Ahluwalia, R. S. (2019b). Estimation of groundwater temperature from 18O fractionation-a deterministic analytical model. Groundwater for Sustainable Development., 9, 1000234. https://doi.org/10.1016/j.gsd.2019.100234

    Article  Google Scholar 

  36. Goff, F., & Gardner, J.N. (2000). Encyclopedia of Volcanoes. Edited by Sigurdsson, H. Academic Press.

  37. Gotkowitz, M. B., Schreiber, M. E., & Simo, T. (2000). Delineating causes of arsenic contamination of groundwater, eastern Wisconsin. EOS Transactions, AGU Fall Meeting Supplement, 81, 552.

    Google Scholar 

  38. GSI. (1991). Geothermal atlas of India. GSI Sp Pub No.19, pp 102–110.

  39. Gupta, H., & Roy, S. (2006). Geothermal energy, an alternative resource for the twenty-first century. Elsevier.

    Google Scholar 

  40. Hanse, A., Chabukdhara, M., & Gohain Baruah, S. (2019). Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India. Environmental Monitoring and Assessment, 191, 782. https://doi.org/10.1007/s10661-019-7970-6

    Article  CAS  Google Scholar 

  41. Henley, R. W., & Ellis, A. J. (1983). Geothermal systems, ancient and modern: A geochemical review. Earth Science Review, 19, 1–50.

    Article  CAS  Google Scholar 

  42. Hoefs, J. (2009). Stable Isotope Geochemistry (6th ed.). Springer-Verlag. 978-3-540-70703-5. Library of Congress Control Number: 2008933507.

    Google Scholar 

  43. Horita, J., Cole, D. R., Polyakov, V. B., & Driesner, T. (2002). Experimental and theoretical study of pressure effects on hydrous isotope fractionation in the system brucite-water at elevated temperatures. Geochimica Et Cosmochimica Acta, 66, 3769–3788.

    Article  CAS  Google Scholar 

  44. Horita, J., Driesner, T., & Cole, D. R. (1999). Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science, 286, 1545–1547.

    Article  CAS  Google Scholar 

  45. Huang, S., Pollack, H. N., & Shen, P. Y. (2000). Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 403, 756–758.

    Article  CAS  Google Scholar 

  46. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007. Cambridge University Press.

    Book  Google Scholar 

  47. Kalina, A. L. (1984). Combined cycle system with novel bottoming cycle. ASME Journal of Engineering for Gas Turbines and Power, 106, 737–742.

    Article  CAS  Google Scholar 

  48. Kappelmeyer, O., & Hänel, R. (1974). Geothermics with special reference to application. Gebruder Borntrargen.

    Google Scholar 

  49. Karagiannis, I. C., & Soldatos, P. G. (2008). Water desalination cost literature: review and assessment. Desalination, 223, 448–456.

    Article  CAS  Google Scholar 

  50. Karanth, K. R. (1987). Ground water Assessment Development and Management. McGraw Hill Publication.

    Google Scholar 

  51. Kathiroli, S., Jalihal, P., & Singh, R. (2006). Low temperature thermal desalination plant at Kavaratti, Lakshadweep. Geological Society of India, 67, 820–822.

    Google Scholar 

  52. Kitchen, N. E., & Valley, J. W. (1995). Carbon isotope thermometry in marbles of the Adirondack Mountains. Journal of Metamorphic Geology, 13, 577–594.

    Article  CAS  Google Scholar 

  53. Ko, A., & Guy, D. B. (1998). “Brackish and Seawater Desalting. In B. S. Parekh (Ed.), Reverse Osmosis Technology” (pp. 141–184). Marcel Dekker.

    Google Scholar 

  54. Kohn, M. J., & Valley, J. W. (1998). Obtaining equilibrium oxygen isotope fractionations from rocks: Theory and examples. Contributions to Mineralogy and Petrology, 132, 209–224.

    Article  CAS  Google Scholar 

  55. Kooi, H. (2008). Spatial variability in subsurface warming over the last three decades; insight from repeated borehole temperature measurements in The Netherlands. Earth and Planetary Science Letters, 270(1–2), 86–94.

    Article  CAS  Google Scholar 

  56. Lebbihiat, N., Atia, A., Arıcı, M., & Meneceur, N. (2021). Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2021.126950

    Article  Google Scholar 

  57. Lee, J. H., & Bang, K. W. (2000). Characterization of urban storm water runoff. Water Research, 34, 1773–1780.

    Article  CAS  Google Scholar 

  58. Lloyd, D. R., Barlow, J. W., & Kinzer, K. E. (1998). Microporous Membrane Formation via Thermally-induced Phase, in New Membrane Materials and Processes for Separation. K.K. Sirkar & D.R. Lloyd (eds.), AIChE Symposium Series 261, AIChE, New York, NY, p 84.

  59. Loeb, S., & Sourirajan, S. (1963). Sea Water Demineralization by Means of an Osmotic Membrane. In R. F. Gould (Ed.), Saline Water Conversion II, Advances in Chemistry Series Number 38 (pp. 117–132). American Chemical Society.

    Chapter  Google Scholar 

  60. Lowrie, W. (2007). Fundamentals of Geophysics (2nd ed.). Cambridge University Press. ISBN-13: 978-0-521-27038-0.

    Book  Google Scholar 

  61. Lund, J. W., & Freeston, D. H. (2001). Worldwide direct uses of geothermal energy 2000. Geothermics, 30, 29–68.

    Article  CAS  Google Scholar 

  62. Lund, J. W., Freeston, D. H., & Boyd, T. L. (2005). Direct application of geothermal energy: 2005 worldwide review. Geothermics, 34, 691–727.

    Article  Google Scholar 

  63. Lund, J. W., Freeston, D. H., & Boyd, T. L. (2011). Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 40(3), 159–180.

    Article  Google Scholar 

  64. Macedonio, F., Curcio, E., & Drioli, E. (2007). Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination, 203, 260–276.

    Article  CAS  Google Scholar 

  65. Malek, A., Hawlader, M. N. A., & Ho, J. C. (1996). Design and economics of RO seawater desalination. Desalination, 105, 249–261.

    Article  Google Scholar 

  66. Matthess, G. (1981). In situ treatment of arsenic contaminated groundwater: in Quality of groundwater. International symposium, Noordwijkerhout, Netherlands, pp. 99–104.

  67. McDonalds, M.G., & Harbaugh, A.W. (1988). A modular three-dimensional finite difference ground water flow model. USGS open file report p 875.

  68. Muirhead, A., Beardsley, S., & Aboudiwan, J. (1982). Performance of the 12,000 m3/day sea water reverse osmosis desalination plant at Jeddah Saudi Arabia. Desalination, 42, 115. Jan. 1979–Jan. 1981.

    Article  CAS  Google Scholar 

  69. Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health, 40, 2259–2301. https://doi.org/10.1007/s10653-018-0096-x

    Article  CAS  Google Scholar 

  70. National Research Council. (1994). Ground Water Recharge Using Waters of Impaired Quality. The National Academies Press. https://doi.org/10.17226/4780

    Book  Google Scholar 

  71. NIOT. (2005). Annual report 2004–2005 (pp. 3–5). National Institute of Ocean Technology.

    Google Scholar 

  72. NREL. (2006). Ocean thermal energy conversion. National Renewable Energy Laboratory. http://www.nrel.gov/otec

  73. Nulsen, R., & McConnell, C. (2000). Salinity at a glance. Farm note can be found at: www.agric.wa.gov.au/agency/Pubns/farmnote/2000/f00800.htm

  74. Parekh, B. (Ed.). (1998). Reverse Osmosis Technology. Marcel Dekker.

    Google Scholar 

  75. Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature. https://doi.org/10.1038/nature07093

    Article  Google Scholar 

  76. Polyakov, V. B., Horita, J., & Cole, D. R. (2006). Pressure effects on the reduced partition function ratio for hydrogen isotopes in water. Geochimica Et Cosmochimica Acta, 70, 1904–1913.

    Article  CAS  Google Scholar 

  77. Pouyfaucon, A. B., & García-Rodríguez, L. (2018). Solar thermal-powered desalination: A viable solution for a potential market. Desalination, 435, 60–69.

    Article  CAS  Google Scholar 

  78. Ravindran, M. (2005). Harnessing of the ocean thermal energy resource. In H. K. Gupta (Ed.), Oceanology (pp. 26–38). Universities Press.

    Google Scholar 

  79. Rybach, L. (1976). Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Applied Geophysics., 114, 309–318.

    Article  CAS  Google Scholar 

  80. Rybach, L. (1988). Determination of heat production rate. In R. Haenel, L. Rybach, & L. Stegena (Eds.), Handbook of Terrestrial Heat Flow Density Determination (p. 486). Kluwer Academic Publishers.

    Google Scholar 

  81. Sáinz García, Á. M., Molinero Huguet, J. J., & Saaltink, M. W. (2011). Numerical modeling of coastal aquifer karst processes by means of coupled simulations of density-driven flow and reactive solute transport phenomena. Carbonates and Evaporites, 26, 19–27.

    Article  Google Scholar 

  82. Sharp, Z. D. (1995). Oxygen isotope geochemistry of the Al2SiO5 polymorphs. American Journal of Science, 295, 1058–1076.

    Article  CAS  Google Scholar 

  83. Shiklomanov, I. A., & Sokolov, A. A. (1983). Methodological basis of world water balance investigation and computation. In: New approaches in water computations. International Association for Hydrological Sciences Publ. No. 148. (Proceedings of the Hamburg Symposium).

  84. Stanger, G., Truong, T. V., Ngoc, K. S. L. T. M., Luyen, T. V., & Thanh, T. T. (2005). Arsenic in groundwaters of the lower Mekong. Environmental Geochemistry and Health, 27, 341–357.

    Article  CAS  Google Scholar 

  85. Taniguchi, M., Shimada, J., & Uemura, T. (2003). Transient effects of surface temperature and groundwater flow on subsurface temperature in Kumamoto Plain, Japan. Physics and Chemistry of the Earth A/b/c, 28(9–11), 477–486.

    Article  Google Scholar 

  86. Todd, D. K. (1980). Groundwater Hydrology (2nd ed.). Wiley. ISBN: 0-471-87616-X.

    Google Scholar 

  87. Tulipano, L., Fidelibus, M. D., & Panagopoulos, A. (Eds.) (2005). Groundwater management of Coastal Karstic Aquifers. In: COST ACTION 621 Final Report, vol. EUR 21366; EU Publications Office (OPOCE): Luxembourg City, Luxembourg; ISBN 92-894-0015-1.

  88. UNESCO. (2006). Water a shared responsibility. United Nations Water Development Report 2. http://www.unesco.org/water/wwap/wwdr2/table_contents.shtml.

  89. United States Department of Interior, Bureau of Reclamation. (2003). Desalting Handbook for Planners. Cost Estimating Procedures. Technical Service Center, Desalination and Water Purification Research and Development Program Report No. 72 (3rd Edition). pp 187–231.

  90. Van der Bruggen, B. (2003). Desalination by distillation and by reverse osmosis—Trends towards the future. Membrane Technology, 2003, 6–9.

    Article  Google Scholar 

  91. Vega, L. A. (1992). Economics of ocean thermal energy conversion (OTEC). In R. J. Seymour (Ed.), Ocean Energy Recovery: The State-of-the Art (pp. 152–181). American Society of Civil Engineers.

    Google Scholar 

  92. Vega, L. A. (1995). Ocean thermal energy conversion. Encyclopedia of Energy Technology and the Environment (pp. 2104–2119). Wiley.

    Google Scholar 

  93. Webster-Brown, J.G. (2000). Chemical contaminants and their effects. In Environmental Safety and Health Issues in Geothermal Development: in World Geothermal Congress, Kazuno, Japan.

  94. Welch, A. H., Kenneth, G., & Stollenwerk, K. G. (2000). Arsenic in groundwater. Kluwer Academic Publishers. ISBN: 1-4020-7317-8.

    Google Scholar 

  95. Zheng, Y. F. (1993). Oxygen isotope fractionation in SiO2 and Al2SiO5 polymorphs: Effect of crystal structure. European Journal of Mineralogy, 5, 651–658.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge Dr. Gurvinder Singh Virk, Dean-School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India for motivating me to write this manuscript. Also, I would like to acknowledge Dr. Santosh K. Rai, Scientist, Wadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India for his valuable feedback on the manuscript for improvement.

Funding

I also declare that no financial grant was received to accomplish this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ganguly.

Ethics declarations

Conflict of interest

Being the single and corresponding author of this review article, I Somenath Ganguly declare that there is no such competing financial or personal conflict of interest that can influence the work reported in this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S. Groundwater—from freshwater source to green energy: an overview from concern to solution. Int J Energ Water Res (2021). https://doi.org/10.1007/s42108-021-00150-4

Download citation

Keywords

  • Groundwater management
  • Groundwater quality
  • Thermal pollution of groundwater
  • Artificial recharge
  • Geothermal energy