Skip to main content

Assessment of Riverbank Filtration for Sirwan River in Iraq

Abstract

The point of the study is to discover the significance of Sirwan riverbank filtration in water treatment, and to compare the quality of Sirwan riverbank filtration water to other two sources, such as Sirwan River and the lake adjacent to Sirwan River, which is semi-riverbank filtration. Water samples have been taken month to month for three months from three sources of water in Kalar City, Iraq, which are Sirwan River, lake and riverbank. In arranging to evaluate the quality of each source of water some physical, chemical and bacteriological parameters were surveyed, such as turbidity, total dissolved solid, calcium, magnesium, sodium, potassium, nitrate, sulfate, pH, coliform, Escherichia coli, and natural organic materials. Turbidities of Sirwan River and lake are typically high which are 13.47 and 6.9 NTU, respectively, however, turbidity is in excellent range in Sirwan riverbank filtration which is 0.3 NTU. Total dissolved solid level of Sirwan riverbank filtration is a bit critical, but it is still in safe range, which is 284 (mg/l). Coliform and Escherichia coli counts are greater than 100 (count/100 ml) in Sirwan River, and lower than 50 (count/100 ml) in lake water, while they are not recorded in Sirwan riverbank filtration. The study concluded that the quality of Sirwan riverbank filtration is best compared to other two sources, since it is ideal in expelling bacteria, organic materials and turbidity. Water treatment plant and profound well that utilized as the sources of potable water in Kalar City can be supplanted with Sirwan riverbank filtration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Al-Jaf, H. A. K., & Jaf, N. (2020). Assessment of the Quality of Ground Water in Kalar City- Kurdistan Region-Iraq. Sulaimani Journal for Engineering Sciences, 7(3), 89–100. https://doi.org/10.17656/sjes.10136

    Article  Google Scholar 

  2. APHA, AWWA, and WEF. (2012). Standard Methods for Examination of Water and Wastewater. 22nd Edition. American Public Health Association, Washington DC. ISBN 978-087553-013-0

  3. Blavier, J., Verbanck, M. A., Craddock, F., Liegeois, S., Latinis, D., Gargouri, L., Flores Rua, G., Debaste, F., & Haut, B. (2014). Investigation of riverbed filtration systems on the Parapeti river, Bolivia. Journal of Water Process Engineering, Elsevier, 1, 27–36. https://doi.org/10.1016/j.jwpe.2014.02.004

    Article  Google Scholar 

  4. Dash, R., Bhanu Prakash, E., Kumar, P., Mehrotra, I., Sandhu, C., & Grischek, T. (2010). River bank filtration in Haridwar, India: Removal of turbidity, organics and bacteria. Hydrogeology Journal, Springer, 18, 973–983. https://doi.org/10.1007/s10040-010-0574-4

    Article  Google Scholar 

  5. Dash, R., Mehrotra, I., Kumar, P., & Grischek, T. (2008). Lake bank filtration at Nainital, India: Water-quality evaluation. Hydrogeology Journal, Springer, 16(6), 1089–1099. https://doi.org/10.1007/s10040-008-0295-0

    CAS  Article  Google Scholar 

  6. Derx, J., Blaschke, A. P., Farnleitner, A. H., Pang, L., Blöschl, G., & Schijven, J. F. (2013). Effects of fluctuations in river water level on virus removal by bank filtration and aquifer passage—A scenario analysis. Journal of Contaminant Hydrology, Elsevier, 147, 34–44. https://doi.org/10.1016/j.jconhyd.2013.01.001

    CAS  Article  Google Scholar 

  7. EPA (2003). Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sodium. United States Environmental Protection Agency. https://www.epa.gov/sites/production/files/2014-09/documents/support_cc1_sodium_dwreport.pdf

  8. Gawle, S., Pateria, K., & Mishra, R. P. (2021). Physico-chemical analysis of groundwater during monsoon and winter season of Dindori district, India. Groundwater for Sustainable Development, Elsevier, 12, 2352–2801. https://doi.org/10.1016/j.gsd.2021.100550

    Article  Google Scholar 

  9. Ghazali, M. F., Adlan, M. N., & Abd Rashid, N. A. (2015). Riverbank filtration: Evaluation of hydraulic properties and riverbank filtered water at Jenderam Hilir. Selangor. Journal Teknologi, 74(11), 33–41. https://doi.org/10.11113/jt.v74.4857

    Article  Google Scholar 

  10. Ghodeif, K., Grischek, T., Bartak, W. R., & Herlitzius, J. (2016). Potential of river bank filtration (RBF) in Egypt. Environmental Earth Sciences, Springer, 75, 671–684. https://doi.org/10.1007/s12665-016-5454-3

    CAS  Article  Google Scholar 

  11. Glorian, H., Börnick, H., Sandhu, C., & Grischek, T. (2018). Water Quality Monitoring in Northern India for an Evaluation of the Efficiency of Bank Filtration Sites. Water, MDPI, 10(12), 1804–1819. https://doi.org/10.3390/w10121804

    CAS  Article  Google Scholar 

  12. Gollnitz, W. D., Whitteberry, B. L., & Vogt, J. A. (2004). Riverbank filtration: Induced infiltration and groundwater quality. Journal American Water Works Association, 96(12), 98–110.

    CAS  Article  Google Scholar 

  13. Grischek, T., & Bartak, R. (2016). Riverbed clogging and sustainability of riverbank filtration. Water, MDPI, 8(12), 604–616. https://doi.org/10.3390/w8120604

    Article  Google Scholar 

  14. Gutierrez, J. P., Van Halem, D., & Rietveld, L. (2017). Riverbank filtration for the treatment of highly turbid Colombian rivers. Drinking Water Engineering and Science, 10(1), 13–26. https://doi.org/10.5194/dwes-10-13-2017

    CAS  Article  Google Scholar 

  15. Hamann, E., Stuyfzand, P. J., Greskowiak, J., Timmer, H., & Massmann, G. (2016). The fate of organic micropollutants during longterm/long-distance river bank filtration. Science of the Total Environment, Elsevier, 545, 629–640. https://doi.org/10.1016/j.scitotenv.2015.12.057

    CAS  Article  Google Scholar 

  16. Hiscock, K. M. and Grischek, T. (2002). Attenuation of groundwater pollution by bank filtration. Journal of Hydrology, Elsevier, 266, 139–144. https://www.sciencedirect.com/science/article/pii/S0022169402001580

  17. Iraqi Standard for Drinking Water. (2009). Iraqi Standard Specification of Drinking Water. According to the Number (417/2009) for Chemical and Physical Tests.

  18. Jaramillo, M. (2011). Riverbank filtration: An efficient and economical drinking water treatment technology. Dyna, 171, 148–157.

    Google Scholar 

  19. Jing, M., Anua, S., & Mazlan, N. (2019). Concentrations of Magnesium, Calcium and Potassium in Drinking Water; A Comparison Between Tap water and Bore Water. Journal of Energy and Safety Technology, 2(1), 1–8. https://doi.org/10.11113/jest.v2n1.36

    Article  Google Scholar 

  20. KENT (2020). What are Total Dissolved Solids (TDS) Level in Drinking Water & How to reduce. Health Care. https://www.kent.co.in/blog/what-are-total-dissolved-solids-tds-how-to-reduce-them/

  21. Kim, M., and Zoh, K.D. (2016). Occurrence and removals of micropollutants in water environment. Environmental Engineering Research, 21, 319–332. http://eeer.org/journal/view.php?doi=https://doi.org/10.4491/eer.2016.115

  22. Kotlarz, N., Lantagne, D., Preston, K., & Jellison, K. (2009). Turbidity and chlorine demand reduction using locally available physical water clarification mechanisms before household chlorination in developing countries. Journal of Water and Health, 59(6), 497–505.

    Article  Google Scholar 

  23. Kruc, R., Krzysztof, D., & Jozef, G. (2019). Migration of Pharmaceuticals from the Warta River to the Aquifer at a Riverbank Filtration Site in Krajkowo (Poland). Water, MDPI, 11, 2238–2249. https://doi.org/10.3390/w11112238

    CAS  Article  Google Scholar 

  24. Kuehn, W., & Mueller, U. (2000). Riverbank filtration. An overview. Journal of the American Water Works Association, 92, 60–69.

    CAS  Article  Google Scholar 

  25. Lamma, O., Abubaker, M., & Lamma, S. (2015). Impact of reverse osmosis on purification of water. Journal of Pharmaceutical Biology, 5(2), 108–112.

    Google Scholar 

  26. Lee, E., Hyun, Y., Lee, K. K., & Shin, J. (2012). Hydraulic analysis of a radial collector well for riverbank filtration near Nakdong River, South Korea. Hydrogeology Journal, Springer, 20, 575–589. https://doi.org/10.1007/s10040-011-0821-3

    Article  Google Scholar 

  27. Loos, R., Gawlik, B.M., Locoro, G., Rimaviciute, E., Contini, S., and Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution, Elsevier, 157, 561–568. https://www.sciencedirect.com/science/article/pii/S0269749108004545?via%3Dihub

  28. Maeng, S. K., Sharma, S. K., Magic-Knezev, A., & Amy, G. (2008). Fate of effluent organic matter (EfOM) and natural organic matter (NOM) through riverbank filtration. Water Science and Technology, 57, 1999–2007. https://doi.org/10.2166/wst.2008.613

    CAS  Article  Google Scholar 

  29. Marianne R. M. (2014). Best practices for collecting water samples. Water Technologyhttps://www.watertechonline.com/home/article/15546332/best-practices-for-collecting-water-samples

  30. Nagy-Kovacs, Z.; László, B.; Fleit, E.; Czichat-Mártonné, K.; Till, G.; Börnick, H.; Adomat, Y.; Grischek, T. (2018). Behaviour of organic micropollutants during riverbank filtration at Budapest, Hungary. Water, MDPI, 10, 1861–1874. https://www.mdpi.com/2073-4441/10/12/1861

  31. Nagy-Kovacs, Z., Davidesz, J., Czihat, K., Till, G., Fleit, E., & Grischek, T. (2019). Water Quality Changes During Riverbank Filtration in Budapest, Hungary. Water, MDPI, 11, 302–316. https://doi.org/10.3390/w11020302

    CAS  Article  Google Scholar 

  32. Partinoudi, V., and Collins, M.R. (2007). Assessing RBF reduction/removal mechanisms for microbial and organic DBP precursors. Journal AWWA, 99, 61–71. https://awwa.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/j.1551-8833.2007.tb08107.x

  33. Przybylek, J., Dragon, K., & Kaczmarek, P. M. J. (2017). Hydrogeological investigations of river bed clogging at a river bank filtration site along the River Warta Poland. Geologos, 23(3), 201–214. https://doi.org/10.1515/logos-2017-0021

    Article  Google Scholar 

  34. Ray, C. (2001). Riverbank filtration: An Analysis of Parameters for Optimal Performance. AWWA annual conference, CD Proceedings.

  35. Rossetto, R., Alessio, B., Giovanna, D. F., Chiara, M., Thomas, V., & Giorgio, M. (2020). Importance of the Induced Recharge Term in Riverbank Filtration: Hydrodynamics, Hydrochemical, and Numerical Modelling Investigations. Hydrology, MDPI, 7(4), 96–116. https://doi.org/10.3390/hydrology7040096

    Article  Google Scholar 

  36. Sandhu, C., and Grischek, T. (2012). Riverbank filtration in India- Using ecosystem services to safeguard human health. Water Supply Technology, 12, 783–790. https://iwaponline.com/ws/article-abstract/12/6/783/25311/Riverbank-filtration-in-India-using-ecosystem?redirectedFrom=fulltext

  37. Schon, M. (2006). Systematic Comparison of Riverbank Filtration Sites in Austria and India. Diplomarbeit Thesis. Leopold Franzes Universitat, Innsbruck.

  38. Scott, A., Bradford, J.S., and Thomas, H. (2015). Microbial Transport and Fate in the Subsurface Environment. Journal of Environmental Quality, (Special Issue), 1333–1337.

  39. Shamrukh, M. (2006). Assessment of Riverbank Filtration for Potable Water Supply in Upper Egypt. Journal of Engineering Sciences, Assiut University, 34(4), 1175–1184.

    Google Scholar 

  40. Shankar, B., Gaurav, G., Jyoti, K., Ketan, S., Sarjerao, B., & Aniruddha, B. (2019). Clean water for developing countries: feasibility of different treatment solutions. Encyclopedia of Environmental Health, Elsevier, 2, 643–652. https://doi.org/10.1016/B978-0-12-409548-9.11079-6

    Article  Google Scholar 

  41. Shankar, V., Eckert, P., Ojha, C., & Konig, C. M. (2009). Transient three-dimensional modeling of riverbank filtration at Grind well field, Germany. Hydrogeology Journal, Springer, 17, 321–326. https://doi.org/10.1007/s10040-008-0356-4

    Article  Google Scholar 

  42. Skolasinska, K. (2006). Clogging microstructures in the vadose zone—laboratory and field studies. Hydrogeology Journal, Springer, 14, 1005–1017. https://doi.org/10.1007/s10040-006-0027-2

    Article  Google Scholar 

  43. Song-Bae, K., Corapcioglu, M. Y., & Dong-Ju, K. (2003). Effect of dissolved organic matter and bacteria on contaminant transport in Riverbank Filtration. Journal of Contaminant Hydrology, 66, 1–23.

    Article  Google Scholar 

  44. Sprenger, C., Lorenzen, G., Hulshoff, I., Grutzmacher, G., Ronghang, M. and Pekdeger, A. (2011). Vulnerability of bank filtration systems to climate change. Science and the Total Environment, 409, 655–663. https://pubmed.ncbi.nlm.nih.gov/21112614/

  45. Sprenger, C., Lorenzen, G., Grunert, A., Ronghang, M., Dizer, H., Selinka, H. C., Girones, R., Lopez-Pila, J. M., Mittal, A. K., & Szewzyk, R. (2014). Removal of indigenous coliphages and enteric viruses during riverbank filtration from highly polluted river water in Delhi (India). Journal of Water and Health, 12, 332–342. https://doi.org/10.2166/wh.2014.134

    CAS  Article  Google Scholar 

  46. Sroka, Z., Walczak, Z., & Wosiewicz, B. (2014). Description and application of a model of seepage under a weir including mechanical clogging. Journal of Water and Land Development, 21, 3–9.

    Article  Google Scholar 

  47. Storck, F. R., Sacher, F., & Brauch, H. J. (2015). Hazardous and emerging substances in drinking water resources in the Danube River Basin. In I. Liska (Ed.), Danube River Basin (pp. 251–270). Springer.

    Google Scholar 

  48. Ulrich, C., Hubbard, S. S., Florsheim, J., Rosenberry, D., Borglin, S., Trotta, M., & Seymour, D. (2015). Riverbed clogging associated with a California riverbank filtration system: An assessment of mechanisms and monitoring approaches. Journal of Hydrology, Elsevier, 259, 1740–1753. https://doi.org/10.1016/j.jhydrol.2015.08.012

    Article  Google Scholar 

  49. Wahaab, R. A., Salah, A., & Grischek, T. (2019). Water Quality Changes during the Initial Operating Phase of Riverbank Filtration Sites in Upper Egypt. Water, MDPI, 11(6), 1258–1276. https://doi.org/10.3390/w11061258

    CAS  Article  Google Scholar 

  50. WHO. (2011). Nitrate and nitrite in drinking-water. World Health Organization. https://www.who.int/water_sanitation_health/dwq/chemicals/nitratenitrite2ndadd.pdf

  51. WHO. (2017). Guidelines for drinking-water quality, fourth edition incorporating the first addendum. Geneva: World Health Organization. http://www.who.int/water_sanitation_health/water-quality/guidelines/en/

  52. Yu, H., Zhu, S., & Wang, X. (2021). Research on groundwater seepage through fault zones in coal mines. Hydrogeology Journal, Springer, 29, 1647–1656. https://doi.org/10.1007/s10040-021-02336-w

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to the Directorate of Water and Sewerage of Kalar, Quality Assurance Department and University of Garmian, Civil Engineering Department for the laboratory support in chemical, physical and bacteriological tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hnar Al-Jaf.

Ethics declarations

Conflict of interest

On behalf of author, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Jaf, . Assessment of Riverbank Filtration for Sirwan River in Iraq. Int J Energ Water Res (2021). https://doi.org/10.1007/s42108-021-00149-x

Download citation

Keywords

  • Bacteriological contamination
  • Kalar City
  • Physical and chemical parameters
  • Water quality
  • Water treatment