Skip to main content

Energy and exergy analyses of fabricated pyramid type solar distillation plant for optimization: An experimental work

Abstract

In many countries, the availability of fresh drinking water is not enough whereas brackish/saline/seawater is sufficiently available. Solar distillation is the most effective technique to produce drinking water for such countries. Researchers have done lot of work to improve production rate with different shapes and insulations for distillation plants. In this experimental work pyramid-type solar distillation plants with thermocol/foam insulations have been fabricated. Performance analyses have been done in the same environmental conditions with same amount of water in the basin. For comparative analyses, exergy concept has been used for this research work with/without considering Sun’s cone angle and at different water depths in the basin. Experimental work has been concluded as—Maximum distilled water production rates with and without coating are 2500 ml/day and 1600 ml/day. With these results, black paint coating for basin has been recommended for distillation system. Distilled water production rates for 2 and 3 in. water level are 2550 ml/day and 2500 ml/day, hence less water in the basin has been suggested for distillation. Thermocol as insulating material has been proposed for the distillation plant since it gives the highest temperature of water (i.e.62 °C) in the basin. Greatest percentage increment in the average volume of distilled water has also been recorded on 25/06/2020 with coated basin. For all cases, percentage increments have been achieved till 14:00 p.m. and after that decrements have been found due to variations in solar intensities. Smallest exergy destruction rate (i.e. 0.83 W) has been achieved with coated basin at maximum solar intensity but maximum rate has been found with foam insulation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

C p :

Specific heat of water (J/kg K)

L :

Length of the distillation system (m)

m :

Mass flow rate of distilled water (kg/s)

dT w :

Temperature difference of water (Kelvin)

Q radiation :

Solar intensity (W/m2)

W :

Width of the distillation system (m)

α, ρ and τ :

Absorptivity, reflectivity and transmissivity of the material

Ψ:

Exergy of solar distillation system (W)

References

  1. Abdallah, S., Badran, O., & Abu-Khader, M. (2008). Performance evaluation of a modified design of a single slope. Desalination, 219, 222–230.

    CAS  Article  Google Scholar 

  2. Afrand, M., Behzadmehr, A., & Karimipour, A. (2010). A Numerical simulation of solar distillation for installation in Chabahar-Iran. World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering, 4(11), 1251–1256.

    Google Scholar 

  3. Al-Hayek, I., & Badran, O. O. (2004). The effect of using different designs of solar stills on water distillation. Desalination, 169, 121–127.

    CAS  Article  Google Scholar 

  4. Al-Karaghouli, A. A., & Alnaser, W. E. (2004). Performances of single and double basin solar stills. Applied Energy, 78, 347–354.

    CAS  Article  Google Scholar 

  5. Bait, O. (2019). Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still. Journal of Cleaner Production, 212, 630–646. https://doi.org/10.1016/j.jclepro.2018.12.015

    Article  Google Scholar 

  6. Banat, F., & Jwaied, N. (2008). Exergy analysis of desalination by solar-powered membrane distillation units. Desalination, 230(1–3), 27–40.

    CAS  Article  Google Scholar 

  7. Bassam, A. K., & Abu-Hijleh, H. M. R. (2003). Experimental study of a solar still with sponge cubes in basin. Energy Conversion Management, 44, 1411–1418.

    Article  Google Scholar 

  8. Cappelletti, G. M. (2002). An experiment with a plastic solar still. Desalination, 142, 221–227.

    CAS  Article  Google Scholar 

  9. Castillo-Tellez, M., Pilatowshy-Figueroa, I., & Sanchez-Juarez, A. (2015). Experimental study on air velocity effect on the efficiency and fresh water production in a forced convective double slope solar still. Applied Thermal Engineering, 75, 1192–1200.

    Article  Google Scholar 

  10. Cerci, Y. (2002). The minimum work requirement for distillation processes. International Journal of Exergy, 2, 15–23.

    Article  Google Scholar 

  11. Cooper, P. I. (1973). The maximum efficiency of single effect solar stills. Solar Energy, 15, 215–217.

    Article  Google Scholar 

  12. Dincer, I., & Rosen, M. A. (2007). Exergy: Energy, environment and sustainable development. Elsevier ltd.

    Google Scholar 

  13. Elango, T., & KalidasaMurugavel, K. (2015). The effect on water depth on the productivity of the single slope and double slope solar stills. Desalination, 359, 82–91.

    CAS  Article  Google Scholar 

  14. Elangovan, T., Mohanraj, R., Manikandan, G., Mohanasundram, S., & Manigandan, V. (2018). Performance investigation on double slope solar still. International Journal for Scientific Research & Development, 5(11), 94–97.

    Google Scholar 

  15. Elbar, A. R. A., Yousef, M. S., & Hassan, H. (2019). Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. Journal of Cleaner Production, 233, 665–680. https://doi.org/10.1016/j.jclepro.2019.06.111

    Article  Google Scholar 

  16. Flendrig, L. M., Shah, B., Subrahmaniam, N., & Ramakrishnan, V. (2009). Low cost thermoformed solar still water purifier for D&E countries. Physics and Chemistry of the Earth, Parts A/b/c, 34, 50–54.

    Article  Google Scholar 

  17. Garg, H. P., & Prakash, J. (2000). Solar Energy: Fundamentals and Applications (1st ed.). Tata McGraw Hill Education Publication.

    Google Scholar 

  18. Geete, A. (2019). Application of exergy and entransy concepts to analyses performance of coal fired thermal power plant: A case study. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2019.1586762

    Article  Google Scholar 

  19. Geete, A. (2020). Performance analyses of coal-fired thermal power plant using parabolic solar collectors for feed water heaters. Australian Journal of Mechanical Engineering. https://doi.org/10.1080/14484846.2019.1706226

    Article  Google Scholar 

  20. Geete, A., Dubey, A., Sharma, A., & Dubey, A. (2019). Exergy analyses of fabricated compound parabolic solar collector with evacuated tubes at different operating conditions: Indore (India). Journal of Institute of Engineers India: Series C, 100(3), 455–460. https://doi.org/10.1007/s40032-018-0455-5

    Article  Google Scholar 

  21. Geete, A., Kharve, D., Patel, H., Karma, H., Prajapati, A., & Sharma, S. (2020). Comparative exergy and exergy efficiency analyses of fabricated single and double slope solar still plants at Indore: Case study. SN Applied Sciences, 2, 963. https://doi.org/10.1007/s42452-020-2763-7

    CAS  Article  Google Scholar 

  22. Geete, A., & Sharma, R. (2019). Experimental exergy analyses on fabricated parabolic solar collector with/without preheater and different collector materials. International Journal of Ambient Energy, 40(6), 577–589. https://doi.org/10.1080/01430750.2017.1422144

    CAS  Article  Google Scholar 

  23. Ismail, B. I. (2009). Design and performance of a transportable hemispherical solar still. Renewable Energy, 34, 145–150.

    Article  Google Scholar 

  24. Joshi, U., & Geete, A. (2016). Numerical simulation on effect of climate & design parameters on the single slope solar still. International Journal of Engineering Associates, 5(5), 6–10.

    Google Scholar 

  25. Kabeel, A. E. (2009). Performance of solar still with a concave wick evaporative surface. Energy, 34, 1504–1509.

    Article  Google Scholar 

  26. Kabeel, A. E., Abdelaziz, G. B., & El-Said, E. M. S. (2019). Experimental investigation of a solar still with composite material heat storage: Energy, exergy and economic analysis. Journal of Cleaner Production, 231, 21–34. https://doi.org/10.1016/j.jclepro.2019.05.200

    Article  Google Scholar 

  27. Kumar, A. T., Jayaprakash, R., Denkenberger, D., Ahsan, A., Okundamiya, M. S., & Kumar, S. (2012). An experimental study on a hemispherical solar still. Desalination, 286, 342–348.

    Article  CAS  Google Scholar 

  28. Kumar, V. K., & Bai, K. R. (2008). Performance study on solar still with enhanced condensation. Desalination, 230, 51–61.

    CAS  Article  Google Scholar 

  29. Kwatra, H. S. (1996). Performance of a solar still: Predicted effect of enhanced evaporation area on yield and evaporation temperature. Solar Energy, 56, 261–266.

    CAS  Article  Google Scholar 

  30. Malakar, D., & Geete, A. (2018). Application of entropy and entransy concepts to design shell and tube type surface condenser at different 4L/D ratios for Maral Overseas Ltd. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2018.1490353

    Article  Google Scholar 

  31. Malik, M. A. (1982). Solar Distillation (1st ed.). Elsevier Science & Technology Books.

    Google Scholar 

  32. Miladi, R., Frikha, N., & Gabsi, S. (2017). Exergy analysis of a solar-powered vacuum membrane distillation unit using two models. Energy, 120, 872–883.

    Article  Google Scholar 

  33. Minasian, A. N., & Al-Karaghouli, A. A. (1995). An improved solar still: The wick-basin type. Energy Conversion Management, 36, 213–217.

    Article  Google Scholar 

  34. Moran, M. J., & Shapiro, H. N. (2010). Fundamentals of engineering thermodynamics. Wiley India private limited.

    Google Scholar 

  35. Murugavel, K. K., Sivakumar, S., Ahamed, J. R., Chockalingam Kn, K. S. K., & Srithar, K. (2010). Single basin double slope solar still with minimum basin depth and energy storing materials. Applied Energy, 87(2), 514–523.

    Article  CAS  Google Scholar 

  36. Nafey, A. S., Abdelkader, M., Abdelmotalib, A., & Mabrouk, A. A. (2000). Parameters affecting solar still productivity. Energy Conversion & Management, 41(16), 1797–1809. https://doi.org/10.1016/S0196-8904(99)00188-0

    CAS  Article  Google Scholar 

  37. Nijmeh, S., Odeh, S., & Akash, B. (2005). Experimental and theoretical study of a single basin solar still in Jordan. International Communications in Heat and Mass Transfer, 32, 565–572.

    CAS  Article  Google Scholar 

  38. Pal, P., & Dev, R. (2016). Experimental study on modified double slope solar still and modified basin type double slope multiwick solar still. World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering, 10(1), 70–75.

    Google Scholar 

  39. Panchal, H. N. (2011). Experimental investigation of varying parameters affecting on double slope single basin solar still. International Journal of Advances in Engineering Sciences, 2, 17–21.

    Google Scholar 

  40. Patel, M. I., Meena, P. M., & Inkia, S. (2013). Effect of dye on distillation of single slope active solar still coupled with evacuated glass tube solar collector. International Journal of Engineering Research and Application, 1(3), 456–460.

    Google Scholar 

  41. Petela, R. (2005). Exergy analysis of the solar cylindrical parabolic cooker. Solar Energy, 79, 221–233.

    CAS  Article  Google Scholar 

  42. Petela, R. (2010). Engineering thermodynamics of thermal radiation: For solar power utilization. The Mc-Graw hill companies inc.

    Google Scholar 

  43. Prasad, P. R., Pujitha, P., Rajeev, G. V., & Vikky, K. (2011). Energy efficient solar water still. International Journal of ChemTech Research, 3(4), 1781–1787.

    Google Scholar 

  44. Rajamanickam, M., & Ragupathy, A. (2012). Influence of water depth on internal heat and mass transfer in a double slope solar still. Energy Procedia, 14, 1701–1708.

    Article  Google Scholar 

  45. Ranjan, K. R., & Kaushik, S. C. (2013). Energy, exergy and thermo-economic analysis of solar distillation systems: A review. Renewable and Sustainable Energy Reviews, 27, 709–723.

    Article  Google Scholar 

  46. Ranjan, K. R., Kaushik, S. C., & Panwar, N. L. (2013). Energy and exergy analysis of passive solar distillation systems. International Journal of Low-Carbon Technologies, 11, 211–221.

    Article  Google Scholar 

  47. Sahoo, B. B., Sahoo, N., Mahanta, P., Kalita, P., Borbora, L., & Saha, U. K. (2008). Performance assessment of a solar still using blackened surface and thermocol insulation. Renewable Energy, 33, 1703–1708.

    CAS  Article  Google Scholar 

  48. Sakthivel, M., Shanmugasundaram, S., & Alwarsamy, T. (2010). An experimental study on a regenerative solar still with energy storage medium—Jute cloth. Desalination, 264, 24–31.

    CAS  Article  Google Scholar 

  49. Shabibi, A. M. A., & Tahat, M. (2015). Thermal Performance of a Single Slope Solar Water Still with Enhanced Solar Heating System. International Conference on Renewable Energies and Power Quality (ICREPQ’15) La Coruña (spain), 25th to 27th March, 2015, 10(13), 585–587. https://doi.org/10.24084/repqj13.417

    Article  Google Scholar 

  50. Sharshir, S. W., Peng, G., Elsheikh, A. H., Edreis, E. M. A., Eltawili, M. A., Abdelhamid, T., Kabeel, A. E., Zang, J., & Yang, N. (2018). Energy and exergy analysis of solar stills with micro/nano particles: A comparative study”. Energy Conversion and Management, 177, 363–375. https://doi.org/10.1016/j.enconman.2018.09.074

    CAS  Article  Google Scholar 

  51. Sodha, M. S., Kumar, A., Tiwari, G. N., & Tyagi, R. C. (1981). Simple multiple wick solar still: analysis and performance. Solar Energy, 26, 127–131.

    Article  Google Scholar 

  52. Sukhatme, S. P., & Nayak, J. K. (2011). Solar energy principles of thermal collection and storage (3rd ed.). The McGraw Hill Companies.

    Google Scholar 

  53. Tiwari, G. N. (2008). Solar Energy: Fundamentals, Design, Modelling and Applications (1st ed.). Narosa Book Distributors Pvt. Ltd.

    Google Scholar 

  54. Tiwari, G. N., Dimri, V., & Chel, A. (2009). Parametric study of an active and passive solar distillation system: Energy and exergy analysis. Desalination, 242(1–3), 1–18.

    CAS  Article  Google Scholar 

  55. Wassouf, P., Peska, T., Singh, R., & Akbarzadeh, A. (2011). Novel and low cost design of portable solar stills. Desalination, 276, 294–302.

    CAS  Article  Google Scholar 

  56. Yousef, M. S., Hassan, H., & Sekiguchi, H. (2019). Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using different absorbing materials. Applied Thermal Engineering, 150, 30–41.

    Article  Google Scholar 

  57. Yousef, M. S., & Hassana, H. (2019). Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: A comparative study. Solar Energy, 182, 316–331. https://doi.org/10.1016/j.solener.2019.02.042

    Article  Google Scholar 

  58. Yousef, M. S., Hassana, H., Ahmed, M., & Ookawara, S. (2017). Energy and exergy analysis of single slope passive solar still under Egyptian climate conditions. Energy Procedia, 141, 18–23.

    Article  Google Scholar 

  59. Zeroual, M., Bechki, D., & Boughali, S. (2011). Experimental investigation on a double slope solar still with partially cooled condenser in the region of Ouargla. Energy Procedia, 6, 736–742.

    Article  Google Scholar 

Download references

Acknowledgements

This research work is completed in the Mechanical Engineering Department at Sushila Devi Bansal College of Technology, Indore, India. This research did not receive any specific grant from any funding agency.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Geete.

Ethics declarations

Conflict of interest

The author and co-authors declare no conflict of interests pertaining to this research article..

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent on studies with human and animals subjects

Not applicable.

Consent to publication

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geete, A., Rathore, S. & Pathak, V.K. Energy and exergy analyses of fabricated pyramid type solar distillation plant for optimization: An experimental work. Int J Energ Water Res (2021). https://doi.org/10.1007/s42108-021-00147-z

Download citation

Keywords

  • Pyramid type solar distillation system
  • Insulating material
  • Exergy analysis
  • Solar intensity