Skip to main content

Impacts of experimental decreasing groundwater levels on bacterial community composition and hydrocarbon attenuation in oil-polluted soil from Northern China

Abstract

Sub-surface oil-polluted soils are frequently subjected to temporal groundwater table fluctuations during which the biological and chemical properties of the soil are expected to change in response to hydrological variations. In this study, we investigated the influence of decreasing groundwater levels on soil enzymatic activities, microbial community and total hydrocarbon dynamics. The changes in enzymatic activities, hydrocarbon removal efficiencies and bacterial community structure in the petroleum polluted soil were monitored by routine collection and testing of soil samples every 20 days over a period of 80 days in a laboratory column setup. Polymerase chain reaction and high-throughput sequencing of soil microbial DNA were used to determine the compositions of microorganisms, alpha and beta diversity in the polluted soil while the soil enzymatic activities and total petroleum hydrocarbon were measured using spectrophotometry and gas chromatography–mass spectrometry, respectively. The results showed that experimental decreases in groundwater levels over 80 days led to increased soil alkalinity, modulated enzymatic activities and enhanced total petroleum hydrocarbon attenuation in sub-surface soil. The findings from this study will be very useful in designing and optimizing bioremediation strategies for petroleum polluted soils from cold temperate regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alef, K., & Nannipieri, P. (1995). Enzyme activities. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 23–30). Academic Press.

    Google Scholar 

  2. Baran, S., Bielińska, J. E., & Oleszczuk, P. (2004). Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 118, 221–232.

    CAS  Article  Google Scholar 

  3. Barnett, S. E., Youngblut, N. D., & Buckley, D. H. (2019). Soil characteristics and land use drive bacterial community assembly patterns. FEMS Microbiology Ecology, 96(1), 1–11.

    Google Scholar 

  4. Buddhadasa, C., Barone, S., Bigger, S., & Orbell, J. (2001). Extraction of hydrocarbons from clay soils by sonication and Soxhlet techniques. Sekiyu Gakkaishi Journal of the Japan Petroleum Institute, 44(6), 378–383.

    CAS  Google Scholar 

  5. Caporaso, J., Kuczynsk, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    CAS  Article  Google Scholar 

  6. Chu, H. Y., Sun, H. B., Tripathi, B. M., Adams, J. M., Huang, R., Zhang, Y. J., & Shi, Y. (2016). Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environmental Microbiology, 18, 1523–1533.

    CAS  Article  Google Scholar 

  7. Cisneros-de la Cueva, S., Martinez-Prado, M., Lopez-Miranda, J., Rojas-Contreras, J., & Medrano-Roldan, H. (2016). Aerobic degradation of diesel by a pure culture of Aspergillus terreus KP862582. Revista Mexicana De Ingenieria Quimica, 15(2), 347–360.

    Article  Google Scholar 

  8. Dong, N., Yu, Z., Yang, C., Yang, M., & Wang, W. (2019). Hydrological impact of a reservoir network in the upper Gan River Basin, China. Hydrological Processes, 33, 1709–1723.

    Article  Google Scholar 

  9. Dzionek, A., Dzik, J., Wojcieszyńska, D., & Guzik, U. (2018). Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts, 8, 434–440.

    Article  CAS  Google Scholar 

  10. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194–2200.

    CAS  Article  Google Scholar 

  11. Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry, 50, 58–65.

    CAS  Article  Google Scholar 

  12. Ekundayo, E. O., Emede, T. O., & Osayande, D. J. (2001). Effects of crude oil spillage on growth and yield of maize (Zea mays L.) in soil of Midwestern Nigeria. Plant Food for Human Nutrition (formerly Qualitas Plantum), 56(4), 313–324.

    CAS  Article  Google Scholar 

  13. Geoffry, K., & Achur, R. N. (2018). Screening and production of lipase from fungal organisms. Biocatalysis and Agricultural Biotechnology, 14, 241–253.

    Article  Google Scholar 

  14. Gianfreda, L., Antonietta-Rao, M., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 341(1–3), 265–279.

    CAS  Article  Google Scholar 

  15. Ginige, M. P., Kaksonen, A. H., Morris, C., Shackelton, M., & Patterson, B. M. (2013). Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water. FEMS Microbiology Ecology, 85(3), 553–567.

    CAS  Article  Google Scholar 

  16. Guwy, A. J., Martin, S. R., Hawkes, F. R., & Hawkes, D. L. (1999). Catalase activity measurements in suspended aerobic biomass and soil samples. Enzyme and Microbial Technology, 25, 669–676.

    CAS  Article  Google Scholar 

  17. Jia, J., Liu, Y., & Li, G. (2009). Contamination characteristics and its relationship with physicochemical properties of oil polluted soils in oilfields of China. Chemical Industry and Engineering Society of China, 60(3), 726–732. (In Chinese).

    CAS  Google Scholar 

  18. Jia, J., Zong, S., Hu, L., Shi, S., Zhai, X., & Wang, B. (2017). The dynamic change of microbial communities in crude oil-contaminated soils from oilfields in China. Soil Sediment Contamination, 17, 1–30.

    Article  CAS  Google Scholar 

  19. Kaushal, J., Mehandia, S., Singh, G., Raina, A., & Arya, S. K. (2018). Catalase enzyme: application in bioremediation and food industry. Biocatalysis and Agricultural Biotechnology, 16, 192–199.

    Article  Google Scholar 

  20. Klamerus-Iwan, A., Błońska, E., Lasota, J., Kalandyk, A., & Waligórski, P. (2015). Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water, Air, and Soil Pollution, 226(11), 389–400.

    Article  CAS  Google Scholar 

  21. Kong, J., Xin, P., Hua, G. F., Luo, Z. Y., Shen, C. J., Chen, D., & Li, L. (2015). Effects of vadose zone on groundwater table fluctuations in unconfined aquifers. Journal of Hydrology, 528, 397–407.

    Article  Google Scholar 

  22. Kuang, S., Su, Y., Wang, H., Yu, W., Lang, Q., & Matangi, G. (2018). Soil microbial community structure and diversity around the aging oil sludge in Yellow River Delta as determined by high-throughput sequencing. Archaea, 2018, 1–10.

    Article  CAS  Google Scholar 

  23. Lai, X., Wen, J., Cen, S., Huang, X., Tian, H., & Shi, X. (2016). Spatial and temporal soil moisture variations over China from simulations and observations. Advances in Meteorology, 2016, 1–14.

    CAS  Google Scholar 

  24. Lekiah, P. P., Lelesi, K. J., & Simeon, A. T. K. (2020). Transport and degradation of hydrocarbons in a simulated crude oil contaminated vadose zone due to nutrient percolation. Singapore Journal of Scientific Research, 10, 425–437.

    Article  Google Scholar 

  25. Lin, X., Li, X., Sun, T., Li, P., Zhou, Q., Sun, L., & Hu, X. (2009). Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bulletin of Environmental Contamination and Toxicology, 83, 542–547. https://doi.org/10.1007/s00128-009-9838-x

    CAS  Article  Google Scholar 

  26. Lipińska, A., Kucharski, J., & Wyszkowska, J. (2014). Activity of arylsulphatase in soil contaminated with polycyclic aromatic hydrocarbons. Water Air Soil Pollution, 225(9), 2097–2104.

    Article  CAS  Google Scholar 

  27. Liu, Q., Tang, J., Gao, K., Gurav, R., & Giesy, J. P. (2017). Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Scientific Reports, 7, 1–12.

    Article  CAS  Google Scholar 

  28. Margesin, R. (2005). Determination of enzyme activities in contaminated soil. In R. Margesin & F. Schinner (Eds.), Soil Biology: manual for soil analysis (Vol. 5, pp. 309–320). Springer.

    Google Scholar 

  29. Margesin, R., Feller, G., Hämmerle, M., Stegner, U., & Schinner, F. (2002). A colorimetric method for the determination of lipase activity in soil. Biotechnology Letters, 24, 27–33.

    CAS  Article  Google Scholar 

  30. Michael, K., Wasswa, J., & Kasozi, G. (2016). Removal efficiency of total petroleum hydrocarbons from water by Pseudomonas aeruginosa: a case of Lake Albert, Uganda. Journal of Bioremediation and Biodegradation, 7, 337–341.

    Google Scholar 

  31. Okonkwo, C. J., Liu, N., Li, J., & Ahmed, A. (2021). Experimental thawing events enhance petroleum hydrocarbon attenuation and enzymatic activities in polluted temperate soils. International Journal Environment Science and Technology. https://doi.org/10.1007/s13762-021-03175-8

    Article  Google Scholar 

  32. Osuji, C., & Adesiyan, S. O. (2005). The Isiokpo oil-pipeline leakage: total organic carbon/organic matter contents of affected soils. Chemistry & Biodiversity, 2(8), 1079–1085.

    CAS  Article  Google Scholar 

  33. Peng, M., Zi, X., & Wang, Q. (2015). Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes. International Journal of Environmental Research and Public Health, 12(10), 12002–12015.

    CAS  Article  Google Scholar 

  34. Popp, N., Schlomann, M., & Mau, M. (2006). Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology, 152, 3291–3304.

    CAS  Article  Google Scholar 

  35. Prosser, J. A., Speir, T. W., Stott, D. E., & Dick, R. P. (2011). Soil oxidoreductases and FDA hydrolysis. Methods of Soil Enzymology, 6, 118.

    Google Scholar 

  36. Sannino, F., & Gianfred, L. (2001). Pesticide influence on soil enzymes activities. Chemosphere, 22, 1–9.

    Google Scholar 

  37. Schnurer, J., & Rosswall, T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied Environment Microbiology, 43, 1256–1261.

    CAS  Article  Google Scholar 

  38. Shankar, V., Agans, R., & Paliy, O. (2017). Advantages of phylogenetic distance based constrained ordination analyses for the examination of microbial communities. Scientific Reports, 7, 1–10. https://doi.org/10.1038/s41598-017-06693-z

    CAS  Article  Google Scholar 

  39. Sheng, Y., Wang, G., Hao, C., Xie, Q., & Zhang, Q. (2016). Microbial community structures in petroleum contaminated soils at an oil field, Hebei, China. Clean, 44(7), 829–839.

    CAS  Google Scholar 

  40. Siles, J. A., & Margesin, R. (2018). Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Applied Microbiology and Biotechnology, 102, 4409–4421.

    CAS  Article  Google Scholar 

  41. Silva, D., de Lima Cavalcanti, D., de Melo, E. J. V., dos Santos, P. N. F., da Luz, E. L. P., de Gusmão, N. B., & de Queiroz Sousa, F. V. (2015). Bio-removal of diesel oil through a microbial consortium isolated from a polluted environment. International Biodeterioration and Biodegradation, 97, 85–89.

    Article  CAS  Google Scholar 

  42. Sun, W., Dong, Y., Gao, P., Fu, M., Ta, K., & Li, J. (2015). Microbial communities inhabiting oil contaminated soils from two major oilfields in Northern China: implications for active petroleum degrading capacity. Journal of Microbiology, 53(6), 371–378.

    CAS  Article  Google Scholar 

  43. Wang, D. Y., Ma, W., Niu, Y. H., Chang, X. X., & Wen, Z. (2007a). Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Region Science and Technology, 48, 34–43.

    Article  Google Scholar 

  44. Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007b). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied Environment Microbiology, 73(16), 5261–5267.

    CAS  Article  Google Scholar 

  45. Wang, X. Y., Feng, J., & Zhao, J. M. (2010). Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environmental Monitoring and Assessment, 161(1), 271–280.

    CAS  Article  Google Scholar 

  46. Wang Y, Feng J, Lin Q, Lyu X, Wang X, Wang G. (2013). Effects of crude oil contamination on soil physical and chemical properties in momoge wetland of China. Chinese Geographical Science, 23(6), 708–715. https://doi.org/10.1007/s11769-013-0641-6.

  47. White, T., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. Academic Press, pp 315–321.

  48. Wu, M., Dick, W. A., Li, W., Wang, X., Yang, Q., Wang, T., & Chen, L. (2016). Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. International Biodeterioration and Biodegradation, 107, 58–164.

    Article  CAS  Google Scholar 

  49. Xin, P., Kong, J., Li, L., & Barry, D. A. (2013). Modelling of groundwater–vegetation interactions in a tidal marsh. Advances in Water Resources, 57, 52–68.

    Article  Google Scholar 

  50. Yang, M., Yang, Y. S., Du, X., Cao, Y., & Lei, Y. (2013). Fate and transport of petroleum hydrocarbons in vadose zone: compound-specific natural attenuation. Water Air Soil Pollution, 224(3), 1439–1453.

    Article  CAS  Google Scholar 

  51. Zhang, Y., Wang, J., Jing, J., & Sun, J. (2014). Response of groundwater to climate change under extreme climate conditions in North China Plain. Journal of Earth Science, 25(3), 612–618.

    Article  Google Scholar 

  52. Zhang, H., Wang, E., Zhou, D., Luo, Z., & Zhang, Z. (2016). Rising soil temperature in China and its potential ecological impact. Scientific Reports, 6(1), 1–8.

    Article  CAS  Google Scholar 

  53. Zhang, L., Zhang, G., & Sun, G. (2017). Variation trend of dry-wet climatic factors and correlation with wetlands in Western Jilin Province, China. Carpathian Journal of Earth and Environmental Science, 12(1), 1–8.

    Google Scholar 

  54. Zheng, Z., Zhang, Y., Su, X., & Cui, X. (2016). Responses of hydrochemical parameters, community structures, and microbial activities to the natural biodegradation of petroleum hydrocarbons in a groundwater–soil environment. Environmental Earth Sciences, 75(21), 1400–1413.

    Article  CAS  Google Scholar 

  55. Zhong, Q., Chen, H., Liu, L., He, Y., Zhu, D., Jiang, L., Zhan, W., & Hu, J. (2017). Water table drawdown shapes the depth-dependent variations in prokaryotic diversity and structure in Zoige peatlands. FEMS Microbiology Ecology, 93(49), 1–11.

    CAS  Google Scholar 

  56. Zhou. Y., Dong. D., & Liu, J. (2013). Upgrading a regional groundwater level monitoring network for Beijing Plain, China. Geoscience Frontiers, 4, 127–138.

  57. Zhou, Y., Wei, A., Li, J., Yan, L., & Li, J. (2016). Groundwater quality evaluation and health risk assessment in the Yinchuan Region, Northwest China. Expo Health, 8, 443–456.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Petroleum Technology Development Fund, Nigeria for the doctoral scholarship award. This work was supported by the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2018ZX07109-003) of China.

Funding

This work was supported by the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2018ZX07109-003) of China. The first author is grateful to the Petroleum Technology Development Fund for the doctoral scholarship award.

Author information

Affiliations

Authors

Contributions

“Conceptualization, NL and CJO; methodology, CJO and LJ; investigation, CJO; resources, NL; writing—original draft preparation, CJO; writing—review and editing, NL; supervision, NL; project administration, LJ; funding acquisition, NL.

Corresponding author

Correspondence to N. Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okonkwo, C.J., Liu, N. & Li, J. Impacts of experimental decreasing groundwater levels on bacterial community composition and hydrocarbon attenuation in oil-polluted soil from Northern China. Int J Energ Water Res 5, 447–460 (2021). https://doi.org/10.1007/s42108-021-00143-3

Download citation

Keywords

  • Water table draw-down
  • Petroleum hydrocarbons
  • Alpha-diversity
  • Soil enzymes