Skip to main content

Hydrogeochemical assessment of groundwater quality for drinking and irrigation purposes in western Coimbatore, South India

Abstract

Groundwater is the only freshwater in the region, as textile industry effluents pollute the Noyyal river. Therefore, a hydrogeochemical investigation was conducted in the western Coimbatore district of Tamil Nadu to examine the groundwater chemistry and its appropriateness for drinking and irrigation. For this purpose, 25 groundwater samples from a borewell were obtained in precleaned 1-L polythene bottles within the study area. The study found that almost all the analysed groundwater samples contained total hardness (TH), total dissolved solids (TDS), sodium (\({\text{Na}}^{ + }\)), potassium (\({\text{K}}^{ + }\)), calcium \(\left( {{\text{Ca}}^{2 + } } \right)\), bicarbonate \({ }\left( {{\text{HCO}}_{3}^{ - } } \right)\), and chloride (\({\text{Cl}}^{ - }\)) above the World Health Organization and the Bureau of Indian Standards recommendations for drinking water. In the investigated area, the groundwater chemistry is predominantly of \({\text{Ca}}^{2 + } - {\rm{HCO}}_{3}^{ - }\) type, as shown in the Piper Trilinear diagram. Gibbs plot shows that groundwater chemistry is controlled by rock–water interaction. A geographic information system (GIS) platform was used to create a spatial distribution map of all the physical and chemical parameters. About 60% of the groundwater sample fall in the poor water class according to the Water Quality Index (WQI) assessment. In contrast, most groundwater samples are found suitable for irrigation purposes by computing sodium percentage, sodium adsorption ratio, salinity hazard, Kelly ratio, residual sodium carbonate and permeability index. These hydrogeochemical results could benefit stakeholders and farmers by managing the water resources in the study area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abbasnia, A., Radfard, M., Mahvi, A. H., Nabizadeh, R., Yousefi, M., Soleimani, H., & Alimohammadi, M. (2018). Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data in Brief, 19, 623–631. https://doi.org/10.1016/j.dib.2018.05.061

    Article  Google Scholar 

  2. Adimalla, N., Dhakate, R., Kasarla, A., & Taloor, A. K. (2020). Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundwater for Sustainable Development, 10, 100334. https://doi.org/10.1016/j.gsd.2020.100334

    Article  Google Scholar 

  3. Adimalla, N., & Venkatayogi, S. (2018). Geochemical characterisation and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India. Applied Water Science. https://doi.org/10.1007/s13201-018-0682-1

    Article  Google Scholar 

  4. Aghazadeh, N., Chitsazan, M., & Golestan, Y. (2016). Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran. Applied Water Science, 7(7), 3599–3616. https://doi.org/10.1007/s13201-016-0498-9

    CAS  Article  Google Scholar 

  5. Ahmed, M. T., Hasan, M. Y., Monir, M. U., Samad, M. A., Rahman, M. M., Islam Rifat, M. S., Islam, M. N., Khan, A. A. S., Biswas, P. K., & Jamil, A. H. M. N. (2020). Evaluation of hydrochemical properties and groundwater suitability for irrigation uses in southwestern zones of Jashore, Bangladesh. Groundwater for Sustainable Development, 11, 100441. https://doi.org/10.1016/j.gsd.2020.100441

    Article  Google Scholar 

  6. Amalraj, A., & Pius, A. (2017). Assessment of groundwater quality for drinking and agricultural purposes of a few selected areas in Tamil Nadu South India: A GIS-based study. Sustainable Water Resources Management, 4(1), 1–21. https://doi.org/10.1007/s40899-017-0113-8

    Article  Google Scholar 

  7. Ansari, J. A., & Umar, R. (2019). Evaluation of hydrogeochemical characteristics and groundwater quality in the quaternary aquifers of Unnao District, Uttar Pradesh, India. HydroResearch, 1, 36–47. https://doi.org/10.1016/j.hydres.2019.01.001

    Article  Google Scholar 

  8. APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). American Public Health Association.

    Google Scholar 

  9. Arulbalaji, P., & Gurugnanam, B. (2016). Groundwater quality assessment using geospatial and statistical tools in Salem District, Tamil Nadu, India. Applied Water Science, 7(6), 2737–2751. https://doi.org/10.1007/s13201-016-0501-5

    CAS  Article  Google Scholar 

  10. Batabyal, A. K., & Chakraborty, S. (2015). Hydrogeochemistry and Water Quality Index in the assessment of groundwater quality for drinking uses. Water Environment Research, 87(7), 607–617. https://doi.org/10.2175/106143015x14212658613956

    CAS  Article  Google Scholar 

  11. Beyene, G., Aberra, D., & Fufa, F. (2019). Evaluation of the suitability of groundwater for drinking and irrigation purposes in Jimma Zone of Oromia, Ethiopia. Groundwater for Sustainable Development, 9, 100216. https://doi.org/10.1016/j.gsd.2019.100216

    Article  Google Scholar 

  12. Bhunia, G. S., Keshavarzi, A., Shit, P. K., Omran, E.-S.E., & Bagherzadeh, A. (2018). Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semi-arid region of Neyshabur, Iran. Applied Water Science. https://doi.org/10.1007/s13201-018-0795-6

    Article  Google Scholar 

  13. Bikundia, D. S., & Mohan, D. (2014). Major ion chemistry of the ground water at the Khoda Village, Ghaziabad, India. Sustainability of Water Quality and Ecology, 3–4, 133–150. https://doi.org/10.1016/j.swaqe.2014.12.001

    Article  Google Scholar 

  14. BIS. (2012). 10500: 2012. Indian standard drinking water specification (second revision). Bureau of Indian Standards.

    Google Scholar 

  15. Bodrud-Doza, Md., Bhuiyan, M. A. H., Islam, S.M.D.-U., Rahman, M. S., Haque, Md. M., Fatema, K. J., Ahmed, N., Rakib, M. A., & Rahman, Md. A. (2019). Hydrogeochemical investigation of groundwater in Dhaka City of Bangladesh using GIS and multivariate statistical techniques. Groundwater for Sustainable Development, 8, 226–244. https://doi.org/10.1016/j.gsd.2018.11.008

    Article  Google Scholar 

  16. Chandra, R., Nishadh, K. A., & Azeez, P. A. (2009). Monitoring water quality of Coimbatore wetlands, Tamil Nadu, India. Environmental Monitoring and Assessment, 169(1–4), 671–676. https://doi.org/10.1007/s10661-009-1206-0

    CAS  Article  Google Scholar 

  17. Davis, S. N., & De Wiest, R. J. M. (1966). Hydrogeology. John Wiley and Sons.

    Google Scholar 

  18. Dehbandi, R., Moore, F., & Keshavarzi, B. (2018). Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran. Chemosphere, 193, 763–776. https://doi.org/10.1016/j.chemosphere.2017.11.021

    CAS  Article  Google Scholar 

  19. Doneen, L. D. (1964). Water quality for agriculture (p. 48). Department of Irrigation, University of California.

    Google Scholar 

  20. Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69(2), 123–134.

    CAS  Article  Google Scholar 

  21. Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall Inc.

    Google Scholar 

  22. Frenkel, H., Goertzen, J. O., & Rhoades, J. D. (1978). Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Science Society of America Journal, 42, 32–39.

    CAS  Article  Google Scholar 

  23. Ganyaglo, S. Y., Banoeng-Yakubo, B., Osae, S., Dampare, S. B., & Fianko, J. R. (2010). Water quality assessment of groundwater in some rock types in parts of the eastern region of Ghana. Environmental Earth Sciences, 62(5), 1055–1069. https://doi.org/10.1007/s12665-010-0594-3

    CAS  Article  Google Scholar 

  24. Gastmans, D., Chang, H. K., & Hutcheon, I. (2010). Groundwater geochemical evolution in the northern portion of the Guarani Aquifer System (Brazil) and its relationship to diagenetic features. Applied Geochemistry, 25(1), 16–33. https://doi.org/10.1016/j.apgeochem.2009.09.024

    CAS  Article  Google Scholar 

  25. Gharbi, A., Ali, Z. I., & Zairi, M. (2019). Groundwater suitability for drinking and agriculture purposes using irrigation water quality index and multivariate analysis: Case of Sidi Bouzid aquifer, central Tunisia. Environmental Earth Sciences. https://doi.org/10.1007/s12665-019-8733-y

    Article  Google Scholar 

  26. Ghazaryan, K., Movsesyan, H., Gevorgyan, A., Minkina, T., Sushkova, S., Rajput, V., & Mandzhieva, S. (2020). Comparative hydrochemical assessment of groundwater quality from different aquifers for irrigation purposes using IWQI: A case-study from Masis province in Armenia. Groundwater for Sustainable Development, 11, 100459. https://doi.org/10.1016/j.gsd.2020.100459

    Article  Google Scholar 

  27. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090. https://doi.org/10.1126/science.170.3962.1088

    CAS  Article  Google Scholar 

  28. Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (3rd ed.). Department of the Interior, U.S. Geological Survey.

    Google Scholar 

  29. Ibn Ali, Z., Gharbi, A., & Zairi, M. (2020). Evaluation of groundwater quality in intensive irrigated zone of Northeastern Tunisia. Groundwater for Sustainable Development, 11, 100482. https://doi.org/10.1016/j.gsd.2020.100482

    Article  Google Scholar 

  30. Islam, A. R. M. T., Shen, S., Haque, M. A., Bodrud-Doza, Md., Maw, K. W., & Habib, Md. A. (2017). Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches. Environment, Development and Sustainability, 20(5), 1935–1959. https://doi.org/10.1007/s10668-017-9971-3

    Article  Google Scholar 

  31. Ismail, A. H., Hassan, G., & Sarhan, A.-H. (2019). Hydrochemistry of shallow groundwater and its assessment for drinking and irrigation purposes in Tarmiah district, Baghdad governorate, Iraq. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2019.100300

    Article  Google Scholar 

  32. Jasrotia, A. S., Taloor, A. K., Andotra, U., & Bhagat, B. D. (2018). Geoinformatics based groundwater quality assessment for domestic and irrigation uses of the Western Doon valley, Uttarakhand, India. Groundwater for Sustainable Development, 6, 200–212. https://doi.org/10.1016/j.gsd.2018.01.003

    Article  Google Scholar 

  33. Jasrotia, A. S., Taloor, A. K., Andotra, U., & Kumar, R. (2019). Monitoring and assessment of groundwater quality and its suitability for domestic and agricultural use in the Cenozoic rocks of Jammu Himalaya, India: A geospatial technology based approach. Groundwater for Sustainable Development, 8, 554–566. https://doi.org/10.1016/j.gsd.2019.02.003

    Article  Google Scholar 

  34. Karanth, K. R. (1987). Ground water assessment, development and management. Tata McGraw-Hill Publishing Company.

    Google Scholar 

  35. Kelly, W. P. (1940). Permissible composition and concentration of irrigated waters. Proceedings of the American Society of Civil Engineers, 66, 607–613.

    Google Scholar 

  36. Khashogji, M. S., & El Maghraby, M. M. S. (2012). Evaluation of groundwater resources for drinking and agricultural purposes, Abar Al Mashi area, south Al Madinah Al Munawarah City, Saudi Arabia. Arabian Journal of Geosciences, 6(10), 3929–3942. https://doi.org/10.1007/s12517-012-0649-8

    Article  Google Scholar 

  37. Kouadra, R., & Demdoum, A. (2020). Hydrogeochemical characteristics of groundwater and quality assessment for the purposes of drinking and irrigation in Bougaa area, Northeastern Algeria. Acta Geochimica, 39(5), 642–654. https://doi.org/10.1007/s11631-019-00393-3

    CAS  Article  Google Scholar 

  38. Kumar, M., Kumari, K., Ramanathan, A. L., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environmental Geology, 53(3), 553–574. https://doi.org/10.1007/s00254-007-0672-3

    CAS  Article  Google Scholar 

  39. Kumar, P. J. S., & Kuriachan, L. (2020). Chemometric appraisal of groundwater quality for domestic, irrigation and industrial purposes in Lower Bhavani River basin, Tamil Nadu, India. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1770241

    Article  Google Scholar 

  40. Kumar, S. K., Babu, S. H., Rao, P. E., Selvakumar, S., Thivya, C., Muralidharan, S., & Jeyabal, G. (2016). Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India. Applied Water Science, 7(5), 2533–2544. https://doi.org/10.1007/s13201-016-0447-7

    CAS  Article  Google Scholar 

  41. Kumar, S., & Sangeetha, B. (2020). Assessment of groundwater quality in Madurai city by using geospatial techniques. Groundwater for Sustainable Development, 10, 100297. https://doi.org/10.1016/j.gsd.2019.100297

    Article  Google Scholar 

  42. Kumari, M., & Rai, S. C. (2020). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes using Water Quality Index in semi arid region of India. Journal of the Geological Society of India, 95(2), 159–168. https://doi.org/10.1007/s12594-020-1405-4

    CAS  Article  Google Scholar 

  43. Laxmankumar, D., Satyanarayana, E., Dhakate, R., & Saxena, P. R. (2019). Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundwater for Sustainable Development, 8, 474–483. https://doi.org/10.1016/j.gsd.2019.01.008

    Article  Google Scholar 

  44. Li, Z., Yang, Q., Yang, Y., Ma, H., Wang, H., Luo, J., Bian, J., & Martin, J. D. (2019). Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities. Journal of Hydrology, 576, 685–697. https://doi.org/10.1016/j.jhydrol.2019.06.037

    CAS  Article  Google Scholar 

  45. Magudeswaran, P., & Ramachandran, T. (2005). Ground water quality in Coimbatore, Tamilnadu Noyal River. Journal of Environmental Pollution and Control, 8(6), 40–44.

    Google Scholar 

  46. Masindi, K., & Abiye, T. (2018). Assessment of natural and anthropogenic influences on regional groundwater chemistry in a highly industrialised and urbanised region: A case study of the Vaal River Basin, South Africa. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7907-3

    Article  Google Scholar 

  47. Mohanraj, R. (2000). Pollution status of wetlands in urban Coimbatore, Tamilnadu, India. Bulletin of Environmental Contamination and Toxicology, 64(5), 638–643. https://doi.org/10.1007/s001280000051

    CAS  Article  Google Scholar 

  48. Nawale, V. P., Malpe, D. B., Marghade, D., & Yenkie, R. (2021). Non-carcinogenic health risk assessment with source identification of nitrate and fluoride polluted groundwater of Wardha sub-basin, central India. Ecotoxicology and Environmental Safety, 208, 111548. https://doi.org/10.1016/j.ecoenv.2020.111548

    CAS  Article  Google Scholar 

  49. Olofinlade, W. S., Daramola, S. O., & Olabode, O. F. (2018). Hydrochemical and statistical modeling of groundwater quality in two constrasting geological terrains of southwestern Nigeria. Modeling Earth Systems and Environment, 4(4), 1405–1421. https://doi.org/10.1007/s40808-018-0486-1

    Article  Google Scholar 

  50. Piper, A.M. (1953). A graphic procedure in the geochemical interpretation of water analysis. US Department of the Interior, Geological Survey, Water Resources Division. Ground Water Branch.

    Google Scholar 

  51. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union, 25(6), 914. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  52. Pisciotta, A., Tiwari, A. K., & De Maio, M. (2018). An integrated multivariate statistical analysis and hydrogeochemical approaches to identify the major factors governing the chemistry of water resources in a mountain region of northwest Italy. Carbonates and Evaporites, 34(3), 955–973. https://doi.org/10.1007/s13146-018-0452-z

    CAS  Article  Google Scholar 

  53. Prasanna, M. V., Chidambaram, S., Hameed, A. S., & Srinivasamoorthy, K. (2011). Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu, India. Journal of Earth System Science, 120(1), 85–98. https://doi.org/10.1007/s12040-011-0004-6

    CAS  Article  Google Scholar 

  54. Prathap, A., & Chakraborty, S. (2019). Hydro chemical characterisation and suitability analysis of groundwater for domestic and irrigation uses in open cast coal mining areas of Charhi and Kuju, Jharkhand. India. Groundwater for Sustainable Development, 9, 100244. https://doi.org/10.1016/j.gsd.2019.100244

    Article  Google Scholar 

  55. Raghunath, H. M. (1987). Groundwater (2nd ed., p. 563). Wiley Eastern Limited.

    Google Scholar 

  56. Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of Water Quality Index for the groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of Chemistry, 6(2), 523–530. https://doi.org/10.1155/2009/757424

    CAS  Article  Google Scholar 

  57. Rao, N. S., Marghade, D., Dinakar, A., Chandana, I., Sunitha, B., Ravindra, B., & Balaji, T. (2017). Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environmental Earth Sciences, 76(21), 1–22. https://doi.org/10.1007/s12665-017-7093-8

    CAS  Article  Google Scholar 

  58. Rao, N. S., Rao, P. S., Reddy, G. V., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. V. (2011). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184(8), 5189–5214. https://doi.org/10.1007/s10661-011-2333-y

    CAS  Article  Google Scholar 

  59. Ravikumar, P., & Somashekar, R. K. (2011). A geochemical assessment of coastal groundwater quality in the Varahi river basin, Udupi District, Karnataka State, India. Arabian Journal of Geosciences, 6(6), 1855–1870. https://doi.org/10.1007/s12517-011-0470-9

    CAS  Article  Google Scholar 

  60. Reddy, B. M., Sunitha, V., Prasad, M., Reddy, Y. S., & Reddy, M. R. (2019). Evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Anantapur, Andhra Pradesh State, South India. Groundwater for Sustainable Development, 9, 100262. https://doi.org/10.1016/j.gsd.2019.100262

    Article  Google Scholar 

  61. Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (p. 160). U. S. Department of Agriculture Handbook.

    Google Scholar 

  62. Roy, A., Keesari, T., Mohokar, H., Sinha, U. K., & Bitra, S. (2018). Assessment of groundwater quality in hard rock aquifer of central Telangana state for drinking and agriculture purposes. Applied Water Science. https://doi.org/10.1007/s13201-018-0761-3

    Article  Google Scholar 

  63. Rumuri, R., & Ramachandran, M. (2020). Identifying major factors controlling groundwater chemistry in predominantly agricultural area of Kattumannarkoil taluk, India, using the hydrochemical processes and GIS. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2020.1726560

    Article  Google Scholar 

  64. Saha, S., Reza, A. H. M. S., & Roy, M. K. (2019). Hydrochemical evaluation of groundwater quality of the Tista floodplain, Rangpur, Bangladesh. Applied Water Science. https://doi.org/10.1007/s13201-019-1085-7

    Article  Google Scholar 

  65. Saleh, A., Al-Ruwaih, F., & Shehata, M. (1999). Hydrogeochemical processes operating within the main aquifers of Kuwait. Journal of Arid Environments, 42(3), 195–209. https://doi.org/10.1006/jare.1999.0511

    Article  Google Scholar 

  66. Sawyer, C. N., & McCarty, P. L. (1967). Chemistry for sanitary engineers (2nd ed., p. 518). McGrawHill.

    Google Scholar 

  67. Selvakumar, S., Chandrasekar, N., & Kumar, G. (2017). Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17, 26–33. https://doi.org/10.1016/j.wri.2017.02.002

    Article  Google Scholar 

  68. Sharma, D. A., Rishi, M. S., & Keesari, T. (2016). Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach. Applied Water Science, 7(6), 3137–3150. https://doi.org/10.1007/s13201-016-0456-6

    CAS  Article  Google Scholar 

  69. Sharmin, S., Mia, J., Miah, M. S., & Zakir, H. M. (2020). Hydrogeochemistry and heavy metal contamination in groundwaters of Dhaka metropolitan city, Bangladesh: Assessment of human health impact. HydroResearch, 3, 106–117. https://doi.org/10.1016/j.hydres.2020.10.003

    Article  Google Scholar 

  70. Singh, G., Rishi, M. S., Herojeet, R., Kaur, L., & Sharma, K. (2019). Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environmental Geochemistry and Health, 42(7), 1833–1862. https://doi.org/10.1007/s10653-019-00449-6

    CAS  Article  Google Scholar 

  71. Sunitha, V., & Reddy, Y. S. (2019). Hydrogeochemical evaluation of groundwater in and around Lakkireddipalli and Ramapuram, Y.S.R District, Andhra Pradesh, India. Hydroresearch, 2, 85–96. https://doi.org/10.1016/j.hydres.2019.11.008

    Article  Google Scholar 

  72. Szaboles, I., & Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In: Proceedings of 8th International Congress of ISSS, Trans, II. pp. 803–812.

  73. Taloor, A. K., Pir, R. A., Aghazadealla, N., Ali, S., Manhas, D. S., Roy, S., & Singh, A. K. (2020). Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality Index(WQI). Groundwater for Sustainable Development, 10, 100364. https://doi.org/10.1016/j.gsd.2020.100364

  74. Thakur, N., Rishi, M., Keesari, T., & Sharma, A. D. (2020). Suitability of spring water from the Upper Beas River Basin in Kullu Valley (Western Himalaya India) for drinking and irrigation purposes. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-020-06143-7

    Article  Google Scholar 

  75. Thapa, R., Gupta, S., Reddy, D. V., & Kaur, H. (2017). An evaluation of irrigation water suitability in the Dwarka river basin through the use of GIS-based modelling. Environmental Earth Sciences. https://doi.org/10.1007/s12665-017-6804-5

    Article  Google Scholar 

  76. Tiwari, A. K., Ghione, R., De Maio, M., & Lavy, M. (2017). Evaluation of hydrogeochemical processes and groundwater quality for suitability of drinking and irrigation purposes: A case study in the Aosta Valley region, Italy. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3031-z

    Article  Google Scholar 

  77. Todd, D. K. (1980). Groundwater hydrology (2nd ed.). John Wiley and Sons.

    Google Scholar 

  78. US Salinity Lanboratory. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook, 60, 83–100.

    Google Scholar 

  79. USDA. (1955). Water- the 1955 yearbook of agriculture. US Department of Agriculture.

    Google Scholar 

  80. Venugopal, T., Giridharan, L., Jayaprakash, M., & Periakali, P. (2008). Environmental impact assessment and seasonal variation study of the groundwater in the vicinity of River Adyar, Chennai, India. Environmental Monitoring and Assessment, 149(1–4), 81–97. https://doi.org/10.1007/s10661-008-0185-x

    CAS  Article  Google Scholar 

  81. Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. M. (2016). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 7(6), 3267–3280. https://doi.org/10.1007/s13201-016-0472-6

    CAS  Article  Google Scholar 

  82. WHO. (2011). Guidelines for drinking-water quality (4th ed., p. 340). World Health Organization.

    Google Scholar 

  83. Wilcox, L. V. (1955). Classification and use of irrigation waters (p. 19). US Department of Agriculture.

    Google Scholar 

  84. Zaidi, F. K., Nazzal, Y., Jafri, M. K., Naeem, M., & Ahmed, I. (2015). Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4828-4

    Article  Google Scholar 

  85. Zolekar, R. B., Todmal, R. S., Bhagat, V. S., Bhailume, S. A., Korade, M. S., & Das, S. (2020). Hydrochemical characterisation and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India. Environment, Development and Sustainability, 23(3), 4433–4452. https://doi.org/10.1007/s10668-020-00782-2

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support received in the form of a Research Fellowship (Award No: 201718-NFST-MAN-00426) under the scheme "National Fellowship and Scholarship for Higher Education of ST Students" from the Ministry of Tribal Affairs, Government of India. The authors are highly grateful to the editor in chief and the anonymous reviewers for their constructive suggestions to improve the manuscript's quality.

Author information

Affiliations

Authors

Contributions

1. KPK, BG and VS developed the adopted methodology. 2. KPK, VS, YSR and AK executed the computations and analytical methods. 3. KOK, BG and VS, have constructed the theory. 4. KPK, BG, VS, YSR and AK have presented the results and assisted in composing the manuscript.

Corresponding author

Correspondence to Karung Phaisonreng Kom.

Ethics declarations

Conflict of interest

There is no conflict of interest for any of the authors in this research.

Research involving human or animal participants

There are no studies with human participants or animals performed by any of the authors in this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kom, K.P., Gurugnanam, B., Sunitha, V. et al. Hydrogeochemical assessment of groundwater quality for drinking and irrigation purposes in western Coimbatore, South India. Int J Energ Water Res (2021). https://doi.org/10.1007/s42108-021-00138-0

Download citation

Keywords

  • Geographic information system
  • Groundwater quality evaluation
  • Southern India
  • Water Quality Index