Skip to main content

Multivariate statistical and GIS methods for the assessment of heavy metal toxicity in Ekulu River, Southeastern, Nigeria

Abstract

The increased rate of population and industrialization in the world today have enhanced contamination by toxic elements, which presents a public health and environmental challenges. In this research, the findings are based on 13 water samples acquired along the Ekulu River, the GIS and the multivariate methods of statistical analysis were adopted to Ekulu River hydrogeochemical tests to evaluate the impacts of urbanization and the spatial variation of harmful elements (Fe, Mn, As, Pb, Cu, Cr, Ni, Cd, and Zn) in the river water. By comparing the varying concentrations with World Health Organization (WHO) and US Environmental Protection Agency (USEPA) standard limits. All toxic metal content in samples taken surpassed the acceptable normal human intake limits. The amounts of Fe and Pb in the upstream samples collected were substantially greater than those from the mid-stream and down-stream areas. In addition, the results show high levels of Ni and As in upstream and down-stream areas, and high amounts of Mn and Cd in mid-stream areas. Multivariate statistical analysis like correlation matrix, PCA and CA confirmed that Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, and Zn are originated from human activity, especially spills from abandoned Enugu coal fields, solid waste disposal along the river channel and industrial effluents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Every related data and material are given in the main paper.

References

  1. Abraham, M. R., & Susan, T. B. (2017). Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality. Chemosphere, 169, 281–287.

    CAS  Article  Google Scholar 

  2. Adaikpoh, O., Nwajei, G. E., & Ogala, J. E. (2005). Heavy metals concentrations in coal and sediments from river Ekulu in Enugu, coal city of Nigeria. Journal of Applied Science and Environmental Management, 9(3), 5–8.

    Google Scholar 

  3. Akbal, F., Gürel, L., Bahadır, T., Güler, İ, Bakan, G., & Büyükgüngör, H. (2011). Water and sediment quality assessment in the mid-Black Sea coast of Turkey using multivariate statistical techniques. Environmental Earth Science, 64, 1387–1395.

    CAS  Article  Google Scholar 

  4. Akoto, O., Bruce, T. N., & Darko, G. (2008). Heavymetals pollution profiles in streams serving the Owabi reservoir. African Journal of Environmental Science and Technology, 2, 354–359.

    Google Scholar 

  5. Ari, E. E. (2006). The geology of Enugu North and the geochemistry of Onyeama Mine Drainage of Enugu State University of Science and Technology, Enugu. Unpublished B.Sc. Thesis. p. 82.

  6. Benkhelil, J. (1989). The origin and evolution of the Cretaceous Benue Trough, Nigeria. Journal of Africa Earth Science, 8, 251–282.

    Article  Google Scholar 

  7. Caritat, P., Main, P. T., Grunsky, E. C., & Mann, A. W. (2017). Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales. Australian Journal of Earth Science, 64(8), 1033–1043.

    Article  Google Scholar 

  8. Casado-Martinez, M. C., Forja, J. M., & DelValls, T. A. (2009). A multivariate assessment of sediment contamination in dredged materials from Spanish ports. Journal of Hazardous Materials, 163, 1353–1359.

    CAS  Article  Google Scholar 

  9. Chakrapani, G. J. (2005). Major and trace element geochemistry in upper Ganga river in the Himalayas, India. Environmental Geology, 48, 189–201. https://doi.org/10.1007/s00254-005-1287-1

    CAS  Article  Google Scholar 

  10. Chen, K., Jiao, J. J., Huang, J., & Huang, R. (2007). Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environmental Pollution, 147(3), 771–780.

    CAS  Article  Google Scholar 

  11. de Caritat, P., & Grunsky, E. C. (2013). Defining element associations and inferring geological processes from total element concentrations in Australian catchment outlet sediments: multivariate analysis of continental-scale geochemical data. Applied Geochemistry, 33, 104–126. https://doi.org/10.1016/j.apgeochem.2013.02.005

    CAS  Article  Google Scholar 

  12. Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 219, 1077–1091.

    CAS  Article  Google Scholar 

  13. Ezenwaji, E. E., Eduputa, B. M., & Uwadiegwu, B. O. (2014). Pollution of Ekulu River in Enugu: a case of negative human impact on the environment. Journal of Environmental Science, Toxicology Food and Technology, 8, 83–92.

    Google Scholar 

  14. Gao, L., Wang, Z., Shan, J., Chen, J., Tang, C., Yi, M., & Zhao, X. (2016). Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse: an example from the Shima River, Pearl River Delta. Ecotoxicology and Environmental Safety, 134, 186–195.

    CAS  Article  Google Scholar 

  15. Gupta, V. K., & Ali, I. (2002). Encyclopedia of surface and colloid science (pp. 136–166). Marcel Dekker.

    Google Scholar 

  16. Iloeje, N. P. (1995). A new geography of Nigeria Revised Ed. Longman Nigeria Ltd.

    Google Scholar 

  17. Inyang, P. E. B. (1974). Climatic regions. In G. E. K. Ofomata (Ed.), Nigeria in maps; Eastern States (pp. 27–29). Ethiopian Publishing House.

    Google Scholar 

  18. Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators, 48(48), 282–291.

    CAS  Article  Google Scholar 

  19. Jalali, M. (2010). Application of multivariate analysis to study water chemistry of groundwater in a semi-arid aquifer, Malayer, Western Iran. Desalination Water Treatment, 19, 307–317.

    CAS  Article  Google Scholar 

  20. Kadhum, S.A., Ishak, M.Y., Zulkifli, S.Z., & Hashim, R.B. (2015). Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Marine Pollution Bulletine, 101, 391-396.

  21. Kirkwood, C., Everett, P., Antonio Ferreira, A., & Lister, B. (2016). Stream sediment geochemistry as a tool for enhancing geological understanding: an overview of new data from south west England. Journal of Geochemical Exploration, 163, 28–40. https://doi.org/10.1016/j.gexplo.2016.01.010

    CAS  Article  Google Scholar 

  22. Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water Air Soil Pollution, 120, 121–137.

    CAS  Article  Google Scholar 

  23. Kumar, M., Ramanatahn, A. L., Tripathi, R., Farswan, S., Kumar, D., & Bhattacharya, P. (2017). A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India. Chemosphere, 166, 135–145.

    CAS  Article  Google Scholar 

  24. Kwaya, M. Y., Hamidu, H., Mohammed, A. I., Abdulmumini, Y. N., Adamu, I. H., Grema, H. M, Dauda, M., Halilu, F. B., & Kana, A. M. (2019). Heavy metals pollution indices and multivariate statistical evaluation of groundwater quality of Maru town and environs. Journal of materials and environmental sciences, 10, 32–44.

  25. Ladipo, K. O. (1986). Tidal shelf depositional model for Ajali Sandstone, Anambra Basin, southeastern Nigeria. Journal of Africa Earth Science, 5(2), 177–185.

    Google Scholar 

  26. Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of Hazardous Materials, 181(1–3), 1051–1058. https://doi.org/10.1016/j.jhazmat.2010.05.120

    CAS  Article  Google Scholar 

  27. Lin, J., McElroy, M. B., & Boersma, K. F. (2009). Constraint of anthropogenic NOx emissions in China from different sectors: a new methodology using multiple satellite retrievals. Atmospheric Chemistry and Physics, 10, 63–78.

    Article  Google Scholar 

  28. Liu, Y., Carranza, E. J. M., Zhou, K., et al. (2019). Compositional balance analysis: an elegant method of geochemical pattern recognition and anomaly mapping for mineral exploration. Natural Resources Research, 28, 1269–1283. https://doi.org/10.1007/s11053-019-09467-8

    Article  Google Scholar 

  29. Lu, H., & Yu, S. (2018). Spatio-temporal variational characteristics analysis of heavy metals pollution in water of the typical northern rivers, China. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.02.081

    Article  Google Scholar 

  30. Marrugo-Negrete, J. L., Pinedo, J. J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sin? River Basin, Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021

    CAS  Article  Google Scholar 

  31. Meng, Q., Zhang, J., Zhang, Z., & Wu, T. (2016). Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment. Environmental Science and Pollution Research, 23(8), 8091–8103.

    CAS  Article  Google Scholar 

  32. Mustapha, A., & Aris, A. Z. (2012). Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Polaris Journal of Environmental Studies, 21, 1359–1367.

    CAS  Google Scholar 

  33. Nazeer, S., Hashmi, M. Z., & Malik, R. N. (2014). Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecological Indicators, 43(43), 262–270.

    CAS  Article  Google Scholar 

  34. Nganje, T. N., Adamu, C. I., Ntekim, E. E. U., Ugbaja, A. N., & Nfor, E. E. (2010). Influence of mine drainage on water quality along River Nyaba in Enugu southeastern, Nigeria. African Journal of Environmental Science and Technology, 4, 132–144.

    CAS  Article  Google Scholar 

  35. Nwajide, C. S., & Reijers, T. J. A. (1996). Geology of the southern Anambra Basin. In T. J. A. Reijers (Ed.), Selected chapters on geology (pp. 133–148). SPDC.

    Google Scholar 

  36. Ojekunle, O. Z., Ojekunle, O. V., Adeyemi, A. A., Taiwo, A. G., Sangowusi, O. R., Taiwo, A. M., & Adekitan, A. A. (2016). Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. Springerplus, 5, 560. https://doi.org/10.1186/s40064-016-2158-9

    CAS  Article  Google Scholar 

  37. Oke, S. A., & Tijani, M. N. (2012). Impact of chemical weathering on groundwater chemistry of Abeokuta area. Elixir Pollution, 46, 8498–8503.

    Google Scholar 

  38. Onyemaobi, O. O. (2012). Problems encountered in dewatering a Nigerian Coal Mine. In IMWA Proceedings, pp. 41–48.

  39. Ozoko, D. C. (2015). Heavy metal chemistry of acid mine drainage in Onyeama coal mine, Enugu Southeastern Nigeria. Journal of Environmental Earth Science, 5(10), 120–127.

    Google Scholar 

  40. Pekey, H., Karakaş, D., & Bakoglu, M. (2004). Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin, 49(9–10), 809–818.

    CAS  Article  Google Scholar 

  41. Potts, L. W. (1987). Quantitative analysis: theory and practice. Harpercollins College Division, p. 770.

  42. Reimann, C., de Caritat, C., GEMAS Project Team, & NGSA Project Team. (2012). New soil composition data for Europe and Australia: demonstrating comparability, identifying continental-scale processes and learning lessons for global geochemical mapping. Science of Total Environment, 416, 239–252.

    CAS  Article  Google Scholar 

  43. Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3), 185–206.

    CAS  Article  Google Scholar 

  44. Reyment, R. A. (1965). Aspect of the geology of Nigeria (p. 145). University of Ibadan.

    Google Scholar 

  45. Sahoo, P. K., Dall’Agnol, R., Salomao, G. N., Junior, J. S. F., Silva, M. S., Filho, P. W. M. S., Costa, M. L., Angelica, R. S., Filho, C. A. M., da Costa, M. F., Guilherme, L. R. G., & Siqueira, J. O. (2020a). Regional-scale mapping for determining geochemical background values in soils of the Itacaiunas River Basin, Brazil: the use of compositional data analysis (CoDA). Geoderma. https://doi.org/10.1016/j.geoderma.2020.114504

    Article  Google Scholar 

  46. Sahoo, P. K., Dall’Agnol, R., Salomao, G. N., Junior, J. S. F., Silva, M. S., Martins, G. C., Souza Filho, P. W. M., Powell, M. A., Maurity, C. W., Angelica, R. S., Costa, M. F., & Siqueira, J. O. (2020b). Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high-density sampling survey in the Parauapebas basin, Brazilian Amazon. Environmental Geochemistry and Health, 42, 255–282. https://doi.org/10.1007/s10653-019-00345-z

    CAS  Article  Google Scholar 

  47. Sahoo, P. K., Dall’Agnol, R., Salomao, G. N., Junior, J. S. F., Silva, M. S., Souza Filho, P. W. M., Powell, M. A., Angelica, R. S., Pontes, P. R., Costa, M. F., & Siqueira, J. O. (2019a). High resolution hydrogeochemical survey and estimation of baseline concentrations of trace elements in surface water of the Itacaiunas River Basin, southeastern Amazonia. Journal of Geochemical Exploration, 205, 106321.

    CAS  Article  Google Scholar 

  48. Sahoo, P. K., Guimaraes, J. T. F., Souza-Filho, P. W. M., Powell, M. A., Silva, M. S., Moraes, A. M., Alves, R., Leite, A. S., Junior, W. N., Rodrique, T. M., Costa, V. E., & Dall’Agnol, R. (2019b). Statistical analysis of lake sediment geochemical data for understanding surface geological factors and processes: an example from Amazonian upland lakes, Brazil. CATENA, 175, 47–62.

    CAS  Article  Google Scholar 

  49. Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

    Article  Google Scholar 

  50. Shyu, G. S., Cheng, B. Y., Chiang, C. T., Yao, P. H., & Chang, T. K. (2011). Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. International Journal of Environmental Research and Public Health, 8, 1084–1109.

    CAS  Article  Google Scholar 

  51. Sin, S. N., Chua, H., Lo, W., & Ng, L. M. (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environment International, 26, 297–301.

    CAS  Article  Google Scholar 

  52. Singh, C. K., Rina, K., Singh, R. P., & Mukherjee, S. (2014). Geochemical characterization and heavy metal contamination of groundwater in Satluj River Basin. Environmental Earth Science, 71(1), 201–216.

    CAS  Article  Google Scholar 

  53. Udeze, M. (1988). River water pollution in Enugu urban area. Unpublished M.Sc. Thesis, University of Nigeria, Nsukka.

  54. USEPA, (2007). National recommended water quality criteria. United States Environmental Protection Agency. Office of Water, Office of Science and Technology.

  55. Van Hullebusch, E. D., Gieteling, J., Zhang, M., Zandvoort, M. H., Van Daele, W., Defrancq, J., & Lens, P. N. L. (2006). Cobalt sorption onto anaerobic granular sludge: isotherm and spatial localization analysis. Journal of Biotechnology, 121, 227–240.

    Article  Google Scholar 

  56. Wang, J., Liu, G., Lu, L., Zhang, J., & Liu, H. (2015). Geochemical normalization and assessment of heavy metals (Cu, Pb, Zn, and Ni) in sediments from the Huaihe River, Anhui, China. CATENA, 129, 30–38.

    CAS  Article  Google Scholar 

  57. WHO. (2004). Guidelines on drinking-water quality (3rd Ed.). Geneva, World Health Organization. 1, 540.

  58. Xiao, J., Jin, Z., & Wang, J. (2014). Geochemistry of trace elements and water quality assessment of natural water within the Tarim River Basin in the extreme arid region, NW China. Journal of Geochemical Exploration, 136(1), 118–126.

    CAS  Article  Google Scholar 

  59. Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101(3), 225–235. https://doi.org/10.1016/j.gexplo.2008.08.003

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Simuchi Analytical Laboratory, Onuiyi Nuskka, Enugu State where the data reported in this study were obtained.

Author information

Affiliations

Authors

Contributions

The whole authors make a considerable input to this manuscript. SII, DCO, and ICA: engaged in drafting the manuscript; SII, DCO, and ICA: wrote the major manuscript. The whole authors discussed the results and implication of the manuscript at every phases.

Corresponding author

Correspondence to S. I. Ifediegwu.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ifediegwu, S.I., Ozoko, D.C. & Aganigbo, I.C. Multivariate statistical and GIS methods for the assessment of heavy metal toxicity in Ekulu River, Southeastern, Nigeria. Int J Energ Water Res (2021). https://doi.org/10.1007/s42108-021-00133-5

Download citation

Keywords

  • Toxic heavy metals
  • Ekulu River
  • Correlation matrix
  • Spatial distribution
  • GIS