Sustainable management to prevent seismic risks in the Büyük Menderes geothermal province (SW Turkey)

Abstract

Sustainable management of geothermal resources is essential to ecosystem resilience which itself underlines human well-being. This issue focuses on the exploitation of many of the natural and energy resources in the world. Geothermal resources in many parts of the world have the potential to have a significant impact on renewable energy use. Geothermal reservoirs experience physical and chemical change that occurs in the fluid chemistry during drilling and discharge. The capacity of the geothermal systems to produce is very variable, and depending on their geological structure different systems will respond to performance differently. Comprehensive management is, therefore, necessary if all geothermal resources are to be used sustainably. This over-exploitation is largely due to insufficient knowledge, inadequate control and when, without traditional management, multiple users use the same tool. Over-exploitation of geothermal reservoirs leads to a substantial reduction in reservoir pressure and a subsequent decline in production and power generation of the well. The system would be balanced by re-injection of the device against the pressure of the liquid or steam extracted from the reservoir. Most important is the potential for perceived seismic events to occur, which could potentially affect engineering structures. The aim of this study is to provide a regional understanding of the geothermal structure and geothermal situation in the Büyük Menderes geothermal province to investigate the discovery and sustainable use of geothermal resources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aksoy, N. (2014). Power generation from geothermal resources in Turkey. Renewable Energy, 68, 595–601. https://doi.org/10.1016/j.renene.2014.02.049

    Article  Google Scholar 

  2. Aksu, B. (2019). Structural controls on Kizildere Geothermal Field Denizli-Turkey. Ankara: Master of Science in Geological Engineering Department, Middle East Technical University.

    Google Scholar 

  3. Arnorsson, S. (Ed.). (2000). Isotopic and chemical techniques in geothermal exploration, development and use: sampling methods, data handling, interpretation (p. 351). International Atomic Energy Agency.

    Google Scholar 

  4. Axelsson, G., Gunnlaugsson (convenors) (2000). Long-term monitoring of high- and low-enthalpy fields under exploitation. International Geothermal Association, World Geothermal Congress 2000 Short Course, Kokonoe, Kyushu District, Japan, May 2000, 226 pp.

  5. Axelsson, G., Stefansson, V., Björnsson, G., Liu, J. (2005). Sustainable management of geothermal resources and utilization for 100 - 300 years. Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005, 1–8 pp.

  6. Baba, A., Şimşek, C., Gündüz, O., Elçi, A., Murathan, A. (2015). Hydrogeochemical properties of geothermal fluid and its effect on the environment in Gediz Graben, Western Turkey. In: Proceedings world geothermal congress 2015, Melbourne, Australia, 19–25 April 2015.

  7. Bjarnadottir, R. (2010). Sustainability evaluation of geothermal systems in Iceland – Indicators for sustainable production, Master’s thesis (p. 87). University of Iceland.

    Google Scholar 

  8. Collins, A. S., & Robertson, A. H. F. (1998). Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. Journal of Geological Society, 15, 759–772.

    Article  Google Scholar 

  9. EU Directive 2009/28/EC (2009) European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. https://www.eea.europa.eu/policy-documents/2009-28-ec (Accessed date 6.05.2021)

  10. Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942

    Article  Google Scholar 

  11. EPA (The U.S. Environmental Protection Agency). (2014). Minimizing and managing potential impacts of injection-induced seismicity from class ii disposal wells: Practical Approaches. Underground Injection Control National Technical Workgroup U.S. Environmental Protection Agency Washington, DC. https://www.epa.gov/sites/production/files/2015-08/documents/induced-seismicity-201502.pdf (Accessed date 5.05.2021)

  12. Evans, W. C., Lorenson, T. D., Sorey, M. L. & Bergfeld, D. (2014). Transport of injected isobutane by thermal groundwater in Long Valley caldera, California, USA. In: Water-Rock Interaction, Two Volume Set: Proceedings of the Eleventh International Symposium on Water-Rock Interaction, 27 June-2 July 2004, pp. 125. Saratoga Springs, New York, USA: CRC Press.

  13. Ganguly, S. (2017). Temperature distribution and thermal performance of an aquifer thermal energy storage system. In: EGU General Assembly Conference Abstracts, Vol. 19, p. 14705.

  14. Gessner, K., Piazolo, S., Güngör, T., Ring, U., Kröner, A., & Passchier, C. W. (2001). Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey. International Journal Earth Science, 89, 766–780.

    CAS  Article  Google Scholar 

  15. Giardini, D. (2009). Geothermal quake risks must be faced. Nature, 462, 848–849. https://doi.org/10.1038/462848a

    CAS  Article  Google Scholar 

  16. Haklıdır Tut, F. S. (2012). Jeotermal akışkan kaynaklı kabuklaşma oluşumu ve engellenmesinde kontrol parametrelerinin izlenmesinin önemi. Türkiye Jeotermal Kaynaklar Arama ve Uygulama Sempozyumu, İTÜ, İstanbul, 08–09 Aralık 2012.

  17. Haklıdır Tut, F. S., Sengün, R., Haizlip Robinson, J. (2015). The geochemistry of deep reservoir wells in Kızıldere Geothermal Field (Turkey), Proceedings of World Geothermal Congress, Melbourne-Australia, 19–24 April 2015.

  18. Halacoglu, U., Fishman, M., Karaagac, U. & Harvey, W. (2018). Four decades of service – Kızıldere reservoir, units and management. GRC Transactions, 42.

  19. Huo, A., Peng, J., Chen, X., Peng, J., & Deng, L. (2016). Groundwater storage and depletion trends in the Loess areas of China. Environmental Earth Sciences, 75(16), 1167.

    Article  Google Scholar 

  20. Jolivet, L., Goffe, B., Monie, P., Truffert-Luxey, C., Patriat, M., & Bonneau, M. (1996). Miocene detachment in Crete and exhumation P-T-t paths of high-pressure metamorphic rocks. Tectonics, 15, 1129–1153.

    Article  Google Scholar 

  21. Karamanderesi, İ.H. (2013) Characteristics of geothermal reservoirs in Turkey. IGA Academy Report 0102–2013

  22. Kazanci, N., Gürbüz, A., & Boyraz, S. (2011). Geology and evolution of the River Büyük Menderes, Western Anatolia, Turkey. Geological Bulletin of Turkey, 54(1–2), 25–56.

    Google Scholar 

  23. Kocyigit, A. (2005). The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history SW Turkey. Geodinamica Acta, 18(3–4), 167–208. https://doi.org/10.3166/ga.18.167-208

    Article  Google Scholar 

  24. Kocyigit, A. (2015). An overview on the main stratigraphic and structural features of a geothermal area: the case of Nazilli-Buharkent section of the Büyük Menderes Graben SW Turkey. Geodinamica Acta, 27(2–3), 84–108. https://doi.org/10.1080/09853111.2014.957501

    Article  Google Scholar 

  25. Luketina, K. M. (2000). New Zealand Geothermal Resource Management-A Regulatory Perspective, Proceedings WGC 2000, Kyushu Tohuku, Japan, pp. 751–756.

  26. Majer, E., Nelson, J., Robertson-Tait, A., Savy, J., Wong, I. (2012). Protocol for addressing induced seismicity associated with enhanced geothermal systems: U.S. Department of Energy, https://www.energy.gov/eere/geothermal/downloads/protocol-addressing-induced-seismicity-associated-enhanced-geothermal-0. (Accessed 28 October 2020).

  27. Malimo, S. J. (2015). Geochemical Monitoring Practices. Presented at Short Course X on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 9-Dec. 1, 2015.

  28. Mertoglu, O., Simsek, S., Basarir, N. & Paksoy, H. (2019). Geothermal Energy Use, Country Update for Turkey. European Geothermal Congress 2019 Den Haag, The Netherlands, 11–14 June 2019, 1–10.

  29. Mink, L. L., Pezzopane, S. K., & Culp, E. L. (2015). Small scale geothermal development—an example of cooperation between land owner and electrical cooperative. Small (Weinheim an Der Bergstrasse, Germany), 19, 25.

    Google Scholar 

  30. MTA (General Directorate of Mineral Research and Exploration) (2020). Geothermal energy potential of Turkey and research studies. https://www.mta.gov.tr/eng/mta/jeotermal-enerji-arastirmalari. (Accessed 04.06.2020)

  31. Pamukcu, O., Gonenc, T., Cirmik, A., Pamukcu, C., & Erturk, N. (2019). The geothermal potential of Buyuk Menderes Graben obtained by combined 25-D normalized full gradient results. Pure Applied Geophysics. https://doi.org/10.1007/s00024-019-02227-y

    Article  Google Scholar 

  32. Ring, U., Gessner, K., Güngör, T., & Passchier, C. W. (1999). The menderes massif of western Turkey and the cycladic massif in the aegean—do they really correlate? Journal of Geological Society, 156(1), 3–6.

    Article  Google Scholar 

  33. Roche, V., Bouchot, V., Beccaletto, L., Jolivet, L., Guillou-Frottier, L., Tuduri, J., Bozkurt, E., Oguz, K., & Tokay, B. (2018). Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). International Journal of Earth Sciences. https://doi.org/10.1007/s00531-018-1655-1

    Article  Google Scholar 

  34. Sengör, A. M. C., Satir, M., & Akkök, R. (1984). Timing of tectonic events in the Menderes Massif, western Turkey: implications for tectonic evolution and evidence for pan-African basement in Turkey. Tectonics, 3(7), 693–707. https://doi.org/10.1029/tc003i007p00693

    Article  Google Scholar 

  35. Seyitoglu, G., & Scott, B. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128(2), 155–166.

    Article  Google Scholar 

  36. Seyitoglu, G., Scott, B. C., & Rundle, C. C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of Geological Society, 149(4), 533–538.

    Article  Google Scholar 

  37. Simsek, S. (1985). Geothermal model of Denizli, Sarayköy-Buldan area. Geothermics, 14(2/3), 393–417.

    CAS  Article  Google Scholar 

  38. Simsek, S. (2003). Hydrogeological and isotopic survey of geothermal fields in the Buyuk Menderes graben, Turkey. Geothermics, 32, 669–678.

    CAS  Article  Google Scholar 

  39. Simsek, S. (2017). The Turkish Geothermal Experience, Chapter 5 Book of Perspectives for Geothermal Energy in Europe, (Edited by: Ruggero Bertani- Enel Green Power, Italy) p:157186, http://www.worldscientific.com/ worldscibooks/https://doi.org/10.1142/q0069, ISBN:978–178634–231–7. World Scientific Publishing Co Pte Ltd. London WC2H 9HE.

  40. Simsek, S., & Demir, A. (1991). Reservoir and cap rock characteristics of some geothermal fields in turkey and encountered problems based on lithology. Journal of Geothermal Resources Society Japan, 13, 191–204.

    Google Scholar 

  41. Stefansson, V. (1997). Geothermal reinjection experience. Geothermics, 26, 99–130.

    CAS  Article  Google Scholar 

  42. Stefansson, V., Axelsson, G., Sigurdsson, O. & Kjaran, S. P. (1995). Geothermal reservoir management in Iceland. Proceedings of the World Geothermal Congress 1995, Florence, Italy, May 1995, 1763–1768.

  43. Steingrimsson, B., Axelsson, G. & Stefansson, V. (2006). Reservoir management and sustainable use of geothermal energy. Presented at Workshop for Decision Makers on Geothermal Projects in Central America, organized by UNU-GTP and LaGeo in San Salvador, El Salvador, 26 November to 2 December 2006.

  44. TEIAS (Turkey’s Electricity Transmission Department) (2018). Türkiye'de elektrik iletimi rakamlarla iletim istatistikleri. https://www.teias.gov.tr/sites/default/files/201901/kurulu_guc_aralik_2018.pdf. Accessed 03.04.2020.

  45. Tezcan, A. K. (1995). Geothermal explorations and heat flow in Turkey. Terr Heat Flow Geotherm Energy Asia, 31, 23–42.

    Google Scholar 

  46. Westaway, R. (1993). Neogene evolution of the Denizli region of western Turkey. Journal of Structural Geology, 15(1), 37–53. https://doi.org/10.1016/01918141(93)90077-n

    Article  Google Scholar 

  47. Zhang, L., Ji, H., Chen, L., Liu, J., & Li, H. (2019). Characteristics of geothermal reservoirs in the Wumishan Formation and groundwater of the Middle-Upper Proterozoic and the geothermal status in the Beijing-Tianjin-Hebei region: implications for geothermal resources exploration. Energy Exploration & Exploitation, 37(2), 811–833. https://doi.org/10.1177/0144598718798100

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ozcelik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozcelik, M. Sustainable management to prevent seismic risks in the Büyük Menderes geothermal province (SW Turkey). Int J Energ Water Res (2021). https://doi.org/10.1007/s42108-021-00131-7

Download citation

Keywords

  • Büyük menderes
  • Geothermal energy
  • Over-exploitation
  • Reinjection
  • Sustainable management