Skip to main content
Log in

May a natural lake behave as an efficient Fenton reactor under dark conditions?

  • Short Communication
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Phenol degradation experiments were performed to study the potential behavior of the acidic Lake Caviahue (LC) as a dark Fenton reactor under natural conditions and upon H2O2 addition at doses typically used for technological applications. In both cases, to assess the influence of dissolved organic matter present in the lake, control experiments were carried out under identical initial conditions (pH, concentrations of phenol, iron, and H2O2), but in the absence of organic matter. A first set of experiments was performed to test the feasibility of dark Fenton processes under environmental conditions. Lake water samples were used as reaction matrix and catalyst source, whereas phenol and H2O2 were added as model pollutant and oxidant, respectively. H2O2 concentrations used were similar to those reported for rainwater. Results show that phenol can be degraded under all conditions studied and that the amount of phenol consumed depends on both the H2O2 concentration added and the matrix composition LC A second set of experiments was designed to characterize the lake behavior as a natural Fenton reactor upon the addition of H2O2 concentrations typically used for technological applications. Although phenol concentration profiles obtained for LC and the artificial solution show the characteristic behavior of Fenton-like systems, the trends are rather different, since for LC, the lag phase is much longer than that for the artificial matrix. Overall, the results suggest that the Fe(III)-chelating effect of the organic matter present in LC slows down reaction rates, but it does not block phenol degradation through Fenton-like processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bach, A., Shemer, H., & Semiat, R. (2010). Kinetics of phenol mineralization by Fenton-like oxidation. Desalination,264, 188–192.

    Article  CAS  Google Scholar 

  • Cabrera, J. M. (2016). Relación entre materia orgánica, hierro, aluminio y manganeso, y las algas acidófilas del Lago Caviahue, Neuquén, Argentina. Doctoral Thesis Universidad Nacional de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, pp 207.

  • Carlos, L., Fabbri, D., Capparelli, A. L., Bianco Prevot, A., Pramauro, E., & García Einschlag, F. S. (2008). Intermediate distributions and primary yields of phenolic products in nitrobenzene degradation by Fenton’s reagent. Chemosphere,72, 952–958.

    Article  CAS  Google Scholar 

  • Carlos, L., Nichela, D., Triszcz, J. M., Felice, J. I., & García Einschlag, F. S. (2010). Nitration of nitrobenzene in Fenton’s processes. Chemosphere,80, 340–345.

    Article  CAS  Google Scholar 

  • Carta, R., & Desogus, F. (2013). The enhancing effect of low power microwaves on phenol oxidation by the Fenton process. Jounal of Environmental Chemical Engineering,1, 1292–1300.

    Article  CAS  Google Scholar 

  • Chen, R., & Pignatello, J. J. (1997). Role of quinone intermediates as electron shuttles in fenton and photoassisted fenton oxidations of aromatic compounds. Environmental Science and Technology,31, 2399–2406.

    Article  CAS  Google Scholar 

  • Diaz, M., Pedrozo, F., Reynolds, C., & Temporetti, P. (2007). Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica,37, 17–27.

    Article  CAS  Google Scholar 

  • Du, Y., Zhou, M., & Lei, L. (2006). Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials,136, 859–865.

    Article  CAS  Google Scholar 

  • Gammons, G. H., Parker, S. R., & Pedrozo, F. L. (2008). The Río Agrio Basin, Argentina: A natural analog to watersheds affected by acid mine drainage. Mining Engineering,60, 74–78.

    CAS  Google Scholar 

  • Geller, W., Klapper, H., & Schultze, M. (1998). Natural and anthropogenic sulfuric acidification of lakes. In W. Geller, M. Schultze, & W. Salomons (Eds.), Acidic mining lakes. Acid mine drainage, limnology and reclamation (pp. 3–14). Berlin: Springer. https://doi.org/10.1007/978-3-642-71954-7.

    Chapter  Google Scholar 

  • Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., Collins, T. J., & Kopinke, F.-D. (2007). Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B-Environmental,72, 26–36.

    Article  CAS  Google Scholar 

  • Gómez-Ortiz, D., et al. (2014). Identification of the subsurface sulfidebodies responsible for acidity in Río Tinto source water, Spain. Earth and Planetary Science Letters,391, 36–41.

    Article  Google Scholar 

  • Gonçalves, C., dos Santos, M. A., Fornaro, A., & Pedrotti, J. J. (2010). Hydrogen peroxide in the rainwater of sao paulo megacity: measurements and controlling factors. Journal of the Brazilian Chemistry Society,21, 331–339.

    Article  Google Scholar 

  • Hanson, A. K., Tindale, N. W., & Abdel-Moati, M. A. R. (2001). An Equatorial Pacific rain event: influence on the distribution of iron and hydrogen peroxide in surface waters. Marine Chemistry,75, 69–88.

    Article  CAS  Google Scholar 

  • Hao, C., Wei, P., Pei, L., Du, Z., Zhang, Y., Lu, Y., et al. (2017). Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Environmental Pollution, 223, 507–516.

    Article  CAS  Google Scholar 

  • McCullough, C. D. (2015). Consequences and opportunities from river breach and decantof an acidic mine pit lake. Ecological Engineering,85, 328–338.

    Article  Google Scholar 

  • Nichela, D., Carlos, L., & García Einschlag, F. (2008). Autocatalytic oxidation of nitrobenzene using hydrogen peroxide and Fe(III). Applied Catalysis B-Environment,82, 11–18.

    Article  CAS  Google Scholar 

  • Nichela, D. A., Donadelli, J. A., Caram, B. F., Haddou, M., Rodriguez Nieto, F. J., Oliveros, E., et al. (2015). Iron cycling during the autocatalytic decomposition of benzoic acidderivatives by Fenton-like and photo-Fenton techniques. Applied Catalysis B-Environment,170, 312–321.

    Article  Google Scholar 

  • Nichela, D., Haddou, M., Benoit-Marquié, F., Maurette, M.-T., Oliveros, E., & García Einschlag, F. S. (2010). Degradation kinetics of hydroxy and hydroxynitro derivatives of benzoic acid by fenton-like and photo-fenton techniques: A comparative study. Applied Catalysis B-Environment,98, 171–179.

    Article  CAS  Google Scholar 

  • Nixdorf, B., Lessmann, D., & Deneke, R. (2005). Mining lakes in a disturbed landscape: Application of the EC Water Framework Directive and future management strategies. Ecological Engineering,24, 67–73.

    Article  Google Scholar 

  • Ohashi, Y., Kan, Y., Watanabe, T., Honda, Y., & Watanabe, T. (2007). Redox silencing of the Fenton reaction system by an alkylitaconic acid, ceriporic acid B produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Organic and Biomolecular Chemistry,5, 840–847.

    Article  CAS  Google Scholar 

  • Olszyna, K. J., Meagher, J. F., & Bailey, E. M. (1988). Gas-Phase, cloud and rain-water measurements of hydrogen peroxide at a high elevation site. Atmospheric Environment,22, 1699–1706.

    Article  CAS  Google Scholar 

  • Pedrozo, F., Kelly, L., Diaz, M., Temporetti, P., Baffico, G., Kringel, R., et al. (2001). First results on the water chemistry, algae and trophic status of an Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia, 452, 129–137.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & Mac Kay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology,36, 1–84.

    Article  CAS  Google Scholar 

  • Qin, J., Li, H., Lin, C., & Chen, G. (2013). Can rainwater induce Fenton-driven degradation of herbicides in natural waters? Chemosphere,92, 1048–1052.

    Article  CAS  Google Scholar 

  • Rae, T. (1998). An introduction to wastewater treatment. London: The Chartered Institution of Water and Environmental Management. (ISBN 1-870752-34-1. 66).

    Google Scholar 

  • Rahmawati, N., Ohashi, Y., Watanabe, T., Honda, Y., & Watanabe, T. (2005). Ceriporic acid B, an Extracellular metabolite of Ceriporiopsis subvermispora, suppresses the depolymerization of cellulose by the fenton reaction. Biomacromolecules,6, 2851–2856.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. Chemical equilibria and rates in natural waters. New York: Wiley-Interscience.

    Google Scholar 

  • Varekamp, J. C. (2008). The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. Journal of Volcanology Geothermal Research,178, 184–196.

    Article  CAS  Google Scholar 

  • Vermilyea, A. W., & Voelker, B. M. (2009). Photo-fenton reaction at near neutral pH. Environmental Science and Technology,43, 6927–6933.

    Article  CAS  Google Scholar 

  • von Sonntag, C. (2008). Advanced oxidation processes: mechanistic aspects. Water Science and Technology,58, 1015–1021.

    Article  Google Scholar 

  • Wang, Y., Lin, X., Shao, Z., Shan, D., Li, G., & Irini, A. (2017). Comparison of Fenton, UV-Fenton and Nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: role of complexation of Fe3+ with hydroxyl group in phloroglucinol. The Chemical Engineering Journal,313, 938–945.

    Article  CAS  Google Scholar 

  • Wols, B. A., & Hofman-Caris, C. H. M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Research,46, 2815–2827.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported through grants from Agencia Nacional de Promoción Científica y Tecnológica ANPCyT (PICT 2012 1389), Universidad Nacional del Comahue (Program 04/B166), Consejo Nacional de Investigaciones Científicas y Técnicas CONICET (PIP 11220090100013) and Ministerio de Ciencia Tecnología en Innovación Productiva, Institut Francais Argentine and TOTAL S.A (Distinción Franco Argentina en Innovación 2018). All the authors collaborated with the work making contributions within their expertise area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nichela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichela, D.A., Einschlag, F.S.G., Beamud, S.G. et al. May a natural lake behave as an efficient Fenton reactor under dark conditions?. Int J Energ Water Res 3, 343–349 (2019). https://doi.org/10.1007/s42108-019-00038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-019-00038-4

Keywords

Navigation