Skip to main content

Advertisement

Log in

Enhancing predictive accuracy: a comprehensive study of optimized machine learning models for ultimate load-carrying capacity prediction in SCFST columns

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The present study introduces optimized machine learning (OML) models for predicting the ultimate axial load-carrying capacity of square concrete-filled steel tube (SCFST) columns. The structural performance of concrete-filled steel tubular (CFST) members, specifically SCFST columns has gained attention for their superior properties in construction. This study establishes a comprehensive comparative analysis of a hyper-tuned artificial neural network coupled with an improved particle swarm optimization (ANN–IPSO) model to predict the structural behaviour of SCFST columns, considering factors, such as shape, length and height of columns, lateral dimensions of columns, strength of steel and concrete, and thickness of steel tube. The performance of the novel OML model is further compared with conventional algorithms, such as particle swarm optimization (PSO) and grey wolf optimization (GWO). The ANN–IPSO model consistently outperforms other models, demonstrating superior predictive ability and accuracy during both training and validating phases. Furthermore, a novel “Score Analysis” technique is applied to validate the performance of predictive models, showcasing the balanced approach of the IPSO algorithm when coupled with ANN. The study concludes by affirming the consistent superiority of the ANN–IPSO model in predicting the ultimate load-carrying capacity of SCFST columns, expanding the knowledge in engineering studies. The results of the study contribute to engineering knowledge by introducing novel applications of improved machine learning algorithms and emphasising the robustness of the ANN–IPSO model to predict the ultimate load-carrying capacity of columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data and supplementary material are available on request.

References

  • Ahmadi, M., Naderpour, H., & Kheyroddin, A. (2014). Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Archives of Civil and Mechanical Engineering, 14(3), 510–517.

    Google Scholar 

  • Armaghani, D. J., Hajihassani, M., Bejarbaneh, B. Y., Marto, A., & Mohamad, E. T. (2014). Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement, 55, 487–498.

    Google Scholar 

  • Armaghani, D. J., Harandizadeh, H., Momeni, E., Maizir, H., & Zhou, J. (2022). An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity. Artificial Intelligence Review, 55, 1–38.

    Google Scholar 

  • Aslani, F., Uy, B., Tao, Z., & Mashiri, F. (2015). Behaviour and design of composite columns incorporating compact high-strength steel plates. Journal of Constructional Steel Research, 107, 94–110.

    Google Scholar 

  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31.

    Google Scholar 

  • Bradford, M. A., Loh, H. Y., & Uy, B. (2002). Slenderness limits for filled circular steel tubes. Journal of Constructional Steel Research, 58(2), 243–252.

    Google Scholar 

  • Buragohain, M., & Mahanta, C. (2008). A novel approach for ANFIS modelling based on full factorial design. Applied Soft Computing, 8(1), 609–625.

    Google Scholar 

  • Chen, B., Liu, X., & Li, S. (2011). Performance investigation of square concrete-filled steel tube columns. Journal of Wuhan University of Technology Materials Science Edition, 26(4), 730–736.

    Google Scholar 

  • Chen, W., Sarir, P., Bui, X. N., Nguyen, H., Tahir, M. M., & Jahed Armaghani, D. (2020). Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Engineering with Computers, 36, 1101–1115.

    Google Scholar 

  • Chen, Z., Ning, F., & Mo, L. (2021). Experimental study and mechanism analysis of concrete-filled square steel tubular columns reinforced by rhombic stirrups under axial compression. Frontiers in Materials, 8, 646656.

    Google Scholar 

  • Ding, F. X., Liu, J., Liu, X. M., Yu, Z. W., & Li, D. W. (2015). Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression. Thin-Walled Structures, 94, 155–166.

    Google Scholar 

  • Fazli, H. (2019a). Optimal performance-based seismic design of composite building frames with RC columns and steel beams. International Journal of Optimization in Civil Engineering, 9(4), 611–628.

    Google Scholar 

  • Fazli, H. (2019b). Performance-based seismic design optimization of composite moment resisting frames with concrete-filled steel columns and steel beams. International Journal of Optimization in Civil Engineering, 9(3), 525–541.

    Google Scholar 

  • Feng, P., Cheng, S., Bai, Y., & Ye, L. (2015). Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression. Composite Structures, 123, 312–324.

    Google Scholar 

  • Ghani, S., & Kumari, S. (2023). Prediction of soil liquefaction for railway embankment resting on fine soil deposits using enhanced machine learning techniques. Journal of Earth System Science, 132(3), 1–23.

    Google Scholar 

  • Güneyisi, E. M., Gültekin, A., & Mermerdaş, K. (2016). Ultimate capacity prediction of axially loaded CFST short columns. International Journal of Steel Structures, 16, 99–114.

    Google Scholar 

  • Gupta, P. K., Sarda, S. M., & Kumar, M. S. (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63(2), 182–193.

    Google Scholar 

  • Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228.

    Google Scholar 

  • Han, L. H., Liu, W., & Yang, Y. F. (2008). Behaviour of concrete-filled steel tubular stub columns subjected to axially local compression. Journal of Constructional Steel Research, 64(4), 377–387.

    Google Scholar 

  • Jiang, H., Mohammed, A. S., Kazeroon, R. A., & Sarir, P. (2021). Use of the gene-expression programming equation and FEM for the high-strength CFST columns. Applied Sciences, 11(21), 10468.

    Google Scholar 

  • Kaveh, A., Dadras Eslamlou, A., Javadi, S. M., & Geran Malek, N. (2021). Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 232, 921–931.

    Google Scholar 

  • Kaveh, A., Eskandari, A., & Movasat, M. (2023). Buckling resistance prediction of high-strength steel columns using metaheuristic-trained artificial neural networks. Structures, 56(C), 104853.

    Google Scholar 

  • Kaveh, A., & Javadi, S. M. (2014). Shape and size optimization of trusses with multiple frequency constraints using harmony search and ray optimizer for enhancing the particle swarm optimization algorithm. Acta Mechanica, 225(6), 1595–1605.

    Google Scholar 

  • Kaveh, A., & Khavaninzadeh, N. (2023). Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength. Structures, 52, 256–272.

    Google Scholar 

  • Kaveh, A., & Talatahari, S. (2011a). An enhanced charged system search for configuration optimization using the concept of fields of forces. Structural and Multidisciplinary Optimization, 43, 339–351.

    Google Scholar 

  • Kaveh, A., & Talatahari, S. (2011b). Hybrid charged system search and particle swarm optimization for engineering design problems. Engineering Computations, 28(4), 423–440.

    Google Scholar 

  • Kaveh, A., & Zarandi, M. M. M. (2019). Optimal design of steel-concrete composite i-girder bridges using three meta-heuristic algorithms. Periodica Polytechnica: Civil Engineering. https://doi.org/10.3311/PPci.12769

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.

  • Khandelwal, M., Marto, A., Fatemi, S. A., Ghoroqi, M., Armaghani, D. J., Singh, T. N., & Tabrizi, O. (2018). Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Engineering with Computers, 34, 307–317.

    Google Scholar 

  • Lachemi, M., Hossain, K. M. A., & Lambros, V. B. (2006). Self-consolidating concrete filled steel tube columns? Design equations for confinement and axial strength. Structural Engineering and Mechanics, 22(5), 541–562.

    Google Scholar 

  • Lam, D., & Williams, C. A. (2004). Experimental study on concrete filled square hollow sections. Steel and Composite Structures, 4(2), 95–112.

    Google Scholar 

  • Le, T. T. (2022). Practical machine learning-based prediction model for axial capacity of square CFST columns. Mechanics of Advanced Materials and Structures, 29(12), 1782–1797.

    Google Scholar 

  • Li, N., Wang, L., Xi, Y., Wang, H., Guan, T., Dong, F., & Cui, W. (2017). The experimental research on axial compression performance of concrete-filled steel square tube strengthened by internal transverse stiffened bars. Functional Materials., 24, 005–452.

    Google Scholar 

  • Liu, J., Teng, Y., Zhang, Y., Wang, X., & Chen, Y. F. (2018). Axial stress-strain behavior of high-strength concrete confined by circular thin-walled steel tubes. Construction and Building Materials, 177, 366–377.

    Google Scholar 

  • Luat, N. V., Shin, J., & Lee, K. (2022). Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns. Engineering with Computers, 38(2), 1421–1450.

    Google Scholar 

  • Mahdiyar, A., Armaghani, D. J., Marto, A., Nilashi, M., & Ismail, S. (2019). Rock tensile strength prediction using empirical and soft computing approaches. Bulletin of Engineering Geology and the Environment, 78, 4519–4531.

    Google Scholar 

  • Mahmood, W., Mohammed, A. S., Asteris, P. G., Kurda, R., & Armaghani, D. J. (2022). Modeling flexural and compressive strengths behaviour of cement-grouted sands modified with water reducer polymer. Applied Sciences, 12(3), 1016.

    Google Scholar 

  • Mai, S. H., Ben Seghier, M. E. A., Nguyen, P. L., Jafari-Asl, J., & Thai, D. K. (2022). A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns. Engineering with Computers, 38, 1–18.

    Google Scholar 

  • Memarzadeh, A., Sabetifar, H., & Nematzadeh, M. (2023). A comprehensive and reliable investigation of axial capacity of Sy-CFST columns using machine learning based models. Engineering Structures, 284, 115956.

    Google Scholar 

  • Ngo, N. T., Le, H. A., & Nguyen, Q. T. (2022). Axial strength prediction of steel tube confined concrete columns using a hybrid machine learning model. Structures, 36, 765–780.

    Google Scholar 

  • Paji, M. K., Gordan, B., Biklaryan, M., Armaghani, D. J., Zhou, J., & Jamshidi, M. (2021). Neuro-swarm and neuro-imperialism techniques to investigate the compressive strength of concrete constructed by freshwater and magnetic salty water. Measurement, 182, 109720.

    Google Scholar 

  • Parsajoo, M., Armaghani, D. J., Mohammed, A. S., Khari, M., & Jahandari, S. (2021). Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study. Transportation Geotechnics, 31, 100652.

    Google Scholar 

  • Pires, T. A., Rodrigues, J. P. C., & Silva, J. J. R. (2012). Fire resistance of concrete filled circular hollow columns with restrained thermal elongation. Journal of Constructional Steel Research, 77, 82–94.

    Google Scholar 

  • Reddy, G. S. R., Bolla, M., Patton, M. L., & Adak, D. (2021). Comparative study on structural behaviour of circular and square section-Concrete Filled Steel Tube (CFST) and Reinforced Cement Concrete (RCC) stub column. Structures, 29, 2067–2081.

    Google Scholar 

  • Ren, Q., Li, M., Zhang, M., Shen, Y., & Si, W. (2019). Prediction of the ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm. Applied Sciences, 9(14), 2802.

    Google Scholar 

  • Roeder, C. W., Lehman, D. E., & Bishop, E. (2010). Strength and stiffness of circular concrete-filled tubes. Journal of Structural Engineering, 136(12), 1545–1553.

    Google Scholar 

  • Rofooei, F. R., Kaveh, A., & Masteri, F. F. (2011). Estimating the vulnerability of concrete moment resisting frame structures using artificial neural networks. International Journal of Operational Research, 1(3), 433–448.

    Google Scholar 

  • Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. D. Reidel81(10.5555), 26853.

  • Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 130(2), 180–188.

    Google Scholar 

  • Sarir, P., Armaghani, D. J., Jiang, H., Sabri, M. M. S., He, B., & Ulrikh, D. V. (2022). Prediction of bearing capacity of the square concrete-filled steel tube columns: An application of metaheuristic-based neural network models. Materials, 15(9), 3309.

    Google Scholar 

  • Sarir, P., Chen, J., Asteris, P. G., Armaghani, D. J., & Tahir, M. M. (2021). Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Engineering with Computers, 37, 1–19.

    Google Scholar 

  • Selma, B., Chouraqui, S., & Abouaïssa, H. (2020). Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system. International Journal of Information Technology, 12(2), 383–395.

    Google Scholar 

  • Sethy, B. P., Patra, C. R., Sivakugan, N., & Das, B. M. (2017). Application of ANN and ANFIS for predicting the ultimate bearing capacity of eccentrically loaded rectangular foundations. International Journal of Geosynthetics and Ground Engineering, 3, 1–14.

    Google Scholar 

  • Shao, Z., Armaghani, D. J., Bejarbaneh, B. Y., Mu’azu, M. A., & Mohamad, E. T. (2019). Estimating the friction angle of black shale core specimens with hybrid-ANN approaches. Measurement, 145, 744–755.

    Google Scholar 

  • She, K., Ma, L. Z., Wan, J. R., & Li, D. H. (2015). Application of DYNAMIC chaos PSO algorithm in elevator configuration. Applied Mechanics and Materials, 734, 548–553.

    Google Scholar 

  • Simpson, P. K. (1991). Artificial neural systems: foundations, paradigms, applications, and implementations. McGraw-Hill Inc.

    Google Scholar 

  • Skalomenos, K. A., Hatzigeorgiou, G. D., & Beskos, D. E. (2014). Parameter identification of three hysteretic models for the simulation of the response of CFT columns to cyclic loading. Engineering Structures, 61, 44–60.

    Google Scholar 

  • Song, T. Y., Han, L. H., & Yu, H. X. (2010). Concrete filled steel tube stub columns under combined temperature and loading. Journal of Constructional Steel Research, 66(3), 369–384.

    Google Scholar 

  • Tang, X. L., Zhang, H., Cui, Y. Q., Gu, L., & Deng, Y. Y. (2014). A novel reactive power optimization solution using improved chaos PSO based on multi-agent architecture. International Transactions on Electrical Energy Systems, 24(5), 609–622.

    Google Scholar 

  • Tao, Z., Han, L. H., & Wang, D. Y. (2007). Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Structures, 45(5), 517–527.

    Google Scholar 

  • Thapa, I., & Ghani, S. (2023). Estimation of California bearing ratio for hill highways using advanced hybrid artificial neural network algorithms. Multiscale and Multidisciplinary Modeling, Experiments and Design,. https://doi.org/10.1007/s41939-023-00269-3

    Article  Google Scholar 

  • Tran, V. L., Thai, D. K., & Kim, S. E. (2019). Application of ANN in predicting ACC of SCFST column. Composite Structures, 228, 111332.

    Google Scholar 

  • Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17(2), 228.

    Google Scholar 

  • Zarringol, M., Thai, H. T., Thai, S., & Patel, V. (2020). Application of ANN to the design of CFST columns. Structures, 28, 2203–2220.

    Google Scholar 

  • Zhu, A., Zhang, X., Zhu, H., Zhu, J., & Lu, Y. (2017). Experimental study of concrete filled cold-formed steel tubular stub columns. Journal of Constructional Steel Research, 134, 17–27.

    Google Scholar 

  • Zhu, M., Liu, J., Wang, Q., & Feng, X. (2010). Experimental research on square steel tubular columns filled with steel-reinforced self-consolidating high-strength concrete under axial load. Engineering Structures, 32(8), 2278–2286.

    Google Scholar 

  • Zhu, T., Liang, H., Lu, Y., Li, W., & Zhang, H. (2020). Axial behaviour of slender concrete-filled steel tube square columns strengthened with square concrete-filled steel tube jackets. Advances in Structural Engineering, 23(6), 1074–1086.

    Google Scholar 

Download references

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

MG conceptualization, data collection, processing of results, writing the first draft, results compilation, and writing the first draft. SP reviewing and finalizing the manuscript. SG machine learning application and interpretation of ml results, finalizing the draft.

Corresponding author

Correspondence to Megha Gupta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Prakash, S. & Ghani, S. Enhancing predictive accuracy: a comprehensive study of optimized machine learning models for ultimate load-carrying capacity prediction in SCFST columns. Asian J Civ Eng 25, 3081–3098 (2024). https://doi.org/10.1007/s42107-023-00964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00964-z

Keywords

Navigation