Skip to main content
Log in

Predicting shear capacity of rectangular hollow RC columns using neural networks

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This study predicts the shear strength of rectangular hollow reinforced concrete (RC) columns using artificial neural network (ANN). A total of 120 experimental results are collected from literature and used for establishing the machine learning model. The results reveal that the proposed ANN model predicts the shear strength of rectangular hollow RC columns accurately with \({R}^{2}\) of 0.99. Additionally, the relative importance of input parameters on the calculated shear strength of RC columns is evaluated using Shapley value. Based on the ANN model, a graphical user interface tool is also developed and readily used in predicting the shear strength of rectangular hollow RC columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

https://github.com/duyduan1304/GUI_RCHollowColumn.

References

  • ACI-318–14 (2014). Building code requirements for structural concrete (ACI 318–14) and commentary. American Concrete Institute.

  • ASCE/SEI-41-06. (2007). Seismic rehabilitation of existing buildings (ASCE/SEI 41–06). American Society of Civil Engineers, Reston, VA.

    Google Scholar 

  • Ascheim, M., & Moehle, J. (1992). Shear strength and deformability of RC bridge columns subjected to inelastic cyclic displacements.

  • Asteris, P.G., & Mokos, V.G. (2019). Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 32(15), 11807–11826.

  • Biskinis, D. E., Roupakias, G. K., & Fardis, M. N. (2004). Degradation of shear strength of reinforced concrete members with inelastic cyclic displacements. Structural Journal, 101, 773–783.

    Google Scholar 

  • Caglar, N., Pala, M., Elmas, M., & Eryılmaz, D. M. (2009). A new approach to determine the base shear of steel frame structures. Journal of Constructional Steel Research, 65, 188–195.

    Google Scholar 

  • Calvi, G. M., Pavese, A., Rasulo, A., & Bolognini, D. (2005). Experimental and numerical studies on the seismic response of RC hollow bridge piers. Bulletin of Earthquake Engineering, 3, 267–297.

    Google Scholar 

  • Cassese, P. (2017). Seismic performance of existing hollow reinforced concrete bridge columns. (Ph. D. Dissertation. Department of Structures for Engineering and …).

  • Cassese, P., De Risi, M. T., & Verderame, G. M. (2019). A modelling approach for existing shear-critical RC bridge piers with hollow rectangular cross section under lateral loads. Bulletin of Earthquake Engineering, 17, 237–270.

    Google Scholar 

  • Cassese, P., De Risi, M. T., & Verderame, G. M. (2020). Seismic assessment of existing hollow circular reinforced concrete bridge piers. Journal of Earthquake Engineering, 24, 1566–1601.

    Google Scholar 

  • Cheng, C.-T., Mo, Y., & Yeh, Y.-K. (2005). Evaluation of as-built, retrofitted, and repaired shear-critical hollow bridge columns under earthquake-type loading. Journal of Bridge Engineering, 10, 520–529.

    Google Scholar 

  • EN-1998-1. (2004). Eurocode 8: Design of structures for earthquake resistance—Part 1: General rules. Seismic actions and rules for buildings.

  • Falcone, R., Lima, C., & Martinelli, E. (2020). Soft computing techniques in structural and earthquake engineering: A literature review. Engineering Structures, 207, 110269.

    Google Scholar 

  • Farfani, H. A., Behnamfar, F., & Fathollahi, A. (2015). Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines. Expert Systems with Applications, 42, 8971–8981.

    Google Scholar 

  • Faria, R., Pouca, N. V., & Delgado, R. (2004). Simulation of the cyclic behaviour of R/C rectangular hollow section bridge piers via a detailed numerical model. Journal of Earthquake Engineering, 8, 725–748.

    Google Scholar 

  • Feng, D.-C., Liu, Z.-T., Wang, X.-D., Jiang, Z.-M., & Liang, S.-X. (2020). Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm. Advanced Engineering Informatics, 45, 101126.

    Google Scholar 

  • Gharehbaghi, S., Yazdani, H., & Khatibinia, M. (2019). Estimating inelastic seismic response of reinforced concrete frame structures using a wavelet support vector machine and an artificial neural network. Neural Computing and Applications, 32, 2975–2988.

  • Ghee, A. B., Priestley, M. N., & Paulay, T. (1989). Seismic shear strength of circular reinforced concrete columns. Structural Journal, 86, 45–59.

    Google Scholar 

  • Han, Q., Du, X., Zhou, Y., & Lee, G. C. (2013). Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads. Earthquake Engineering and Engineering Vibration, 12, 433–445.

    ADS  Google Scholar 

  • Kaveh, A., Dadras Eslamlou, A., Javadi, S., & Geran Malek, N. (2021). Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 232, 921–931.

    Google Scholar 

  • Kaveh, A., Eskandari, A., and Movasat, M. (2023). Buckling resistance prediction of high-strength steel columns using metaheuristic-trained artificial neural networks. (Elsevier), pp. 104853.

  • Kaveh, A., and Khavaninzadeh, N. (2023). Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength. (Elsevier), pp. 256–272.

  • Kim, T.-H. (2019). Analytical seismic performance assessment of hollow reinforced-concrete bridge columns. Magazine of Concrete Research, 71, 719–733.

    Google Scholar 

  • Kim, T.-H., Kim, I.-H., Lee, J.-H., & Shin, H. M. (2019). Hollow bridge columns with triangular confining reinforcement. Canadian Journal of Civil Engineering, 46, 467–480.

    Google Scholar 

  • Kim, T.-H., Lee, J.-H., & Shin, H.-M. (2014a). Hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction: I. Development and verification. Journal of the Earthquake Engineering Society of Korea, 18, 1–8.

    Google Scholar 

  • Kim, T.-H., Lee, J.-H., & Shin, H. M. (2014b). Performance assessment of hollow RC bridge columns with triangular reinforcement details. Magazine of Concrete Research, 66, 809–824.

    Google Scholar 

  • Kowalsky, M. J., & Priestley, M. N. (2000). Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions. Structural Journal, 97, 388–396.

    Google Scholar 

  • Ma, Y., & Gong, J.-X. (2018). Probability identification of seismic failure modes of reinforced concrete columns based on experimental observations. Journal of Earthquake Engineering, 22, 1881–1899.

    Google Scholar 

  • Mai, S. H., Tran, V.-L., Nguyen, D.-D., Nguyen, V. T., & Thai, D.-K. (2022). Patch loading resistance prediction of steel plate girders using a deep artificial neural network and an interior-point algorith. Steel and Composite Structures, 45, 159.

    Google Scholar 

  • Mangalathu, S., Hwang, S.-H., & Jeon, J.-S. (2020). Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Engineering Structures, 219, 110927.

    Google Scholar 

  • Mangalathu, S., & Jeon, J.-S. (2019). Machine learning–based failure mode recognition of circular reinforced concrete bridge columns: Comparative study. Journal of Structural Engineering, 145, 04019104.

    Google Scholar 

  • Mo, Y., Jeng, C.-H., & Perng, S. (2001). Seismic shear behavior of rectangular hollow bridge columns. Structural Engineering and Mechanics, 12, 429–448.

    Google Scholar 

  • Mo, Y., & Nien, I. (2002). Seismic performance of hollow high-strength concrete bridge columns. Journal of Bridge Engineering, 7, 338–349.

    Google Scholar 

  • Mo, Y., Wong, D., & Maekawa, K. (2003). Seismic performance of hollow bridge columns. Structural Journal, 100, 337–348.

    Google Scholar 

  • Morfidis, K., & Kostinakis, K. (2018). Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Engineering Structures, 165, 120–141.

    Google Scholar 

  • Nguyen, D.-D., Tran, V.-L., Ha, D.-H., Nguyen, V.-Q., & Lee, T.-H. (2021a). A machine learning-based formulation for predicting shear capacity of squat flanged RC walls (pp. 1734–1747). Elsevier.

    Google Scholar 

  • Nguyen, T.-H., Tran, N.-L., & Nguyen, D.-D. (2021b). Prediction of axial compression capacity of cold-formed steel oval hollow section columns using ANN and ANFIS Models. International Journal of Steel Structures. https://doi.org/10.1007/s13296-021-00557-z

    Article  Google Scholar 

  • Pekelnicky, R., Engineers, S., Chris Poland, S., & Engineers, N. (2012). ASCE 41–13: Seismic evaluation and retrofit rehabilitation of existing buildings. In: Proceedings of the SEAOC.

  • Phan, V.-T., Tran, V.-L., Nguyen, V.-Q., & Nguyen, D.-D. (2022). Machine learning models for predicting shear strength and identifying failure modes of rectangular RC columns. Buildings, 12, 1493.

    Google Scholar 

  • Pinto, A., Molina, J., & Tsionis, G. (2003). Cyclic tests on large-scale models of existing bridge piers with rectangular hollow cross-section. Earthquake Engineering & Structural Dynamics, 32, 1995–2012.

    Google Scholar 

  • Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of Structural Engineering, 120, 2310–2329.

    Google Scholar 

  • Qi, Y.-L., Han, X.-L., & Ji, J. (2013). Failure mode classification of reinforced concrete column using Fisher method. Journal of Central South University, 20, 2863–2869.

    Google Scholar 

  • Razzaghi, M. S., Safarkhanlou, M., Mosleh, A., & Hosseini, P. (2018). Fragility assessment of RC bridges using numerical analysis and artificial neural networks. Earthquakes and Structures, 15, 431–441.

    Google Scholar 

  • Sezen, H., & Moehle, J. P. (2004). Shear strength model for lightly reinforced concrete columns. Journal of Structural Engineering, 130, 1692–1703.

    Google Scholar 

  • Shin, M., Choi, Y. Y., Sun, C.-H., & Kim, I.-H. (2013). Shear strength model for reinforced concrete rectangular hollow columns. Engineering Structures, 56, 958–969.

    Google Scholar 

  • Sun, Z., Wang, D., Wang, T., Wu, S., & Guo, X. (2019). Investigation on seismic behavior of bridge piers with thin-walled rectangular hollow section using quasi-static cyclic tests. Engineering Structures, 200, 109708.

    Google Scholar 

  • Tran, N.-L., Nguyen, D.-D., & Nguyen, T.-H. (2022). Prediction of speed limit of cars moving on corroded steel girder bridges using artificial neural networks. Sādhanā, 47, 1–14.

    Google Scholar 

  • Tran, V.-L., Thai, D.-K., & Nguyen, D.-D. (2020). Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Structures, 151, 106720.

    Google Scholar 

  • Yang, C., Xie, L., & Li, A. (2019). Full-scale experimental and numerical investigations on seismic performance of square RC frame columns with hollow sections. Journal of Earthquake Engineering, 26(1), 427–448.

  • Yeh, Y.-K., Mo, Y., & Yang, C. (2002a). Full-scale tests on rectangular hollow bridge piers. Materials and Structures, 35, 117–125.

    Google Scholar 

  • Yeh, Y.-K., Mo, Y. L., & Yang, C. (2002b). Seismic performance of rectangular hollow bridge columns. Journal of Structural Engineering, 128, 60–68.

    Google Scholar 

  • Zhu, L., Elwood, K., & Haukaas, T. (2007). Classification and seismic safety evaluation of existing reinforced concrete columns. Journal of Structural Engineering, 133, 1316–1330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

X-BN: formal analysis, validation, visualization, writing—original draft. V-LT: conceptualization, software, writing—original draft. H-TP: visualization, validation. D-DN: methodology, formal analysis, validation; writing —original draft, writing—review & editing, supervision.

Corresponding author

Correspondence to Duy-Duan Nguyen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Detailed information of the database

Detailed information of the database

ID

\({L}_{\rm v}\)(mm)

\(B\)(mm)

\(H\)(mm)

\({t}_{\rm w}\)(mm)

\({\rho }_{\rm l}\)(%)

\({\rho }_{\rm w}\)(%)

\(s\)(mm)

\(f_{c}^{\prime}\)(MPa)

\({f}_{\rm yl}\)(MPa)

\({f}_{\rm yw}\)(MPa)

\(P\)(kN)

V

(kN)

FM

1

1500

400

600

100

0.88

0.12

120

19

540

655

148

168

F

2

1500

600

400

100

0.88

0.12

120

21

540

655

166

117

F

3

900

400

600

100

0.88

0.12

120

22

540

655

174

278

FS

4

900

600

400

100

0.88

0.12

120

21

540

655

168

193

FS

5

900

450

450

75

1.07

0.13

75

35

550

550

236

217

FS

6

900

450

450

75

1.07

0.13

75

24

550

550

507

247

FS

7

900

450

450

75

1.07

0.13

75

32

550

550

763

297

FS

8

1350

450

450

75

1.79

0.25

75

30

550

550

239

217

FS

9

1350

450

450

75

1.79

0.25

75

30

550

550

501

209

FS

10

1350

450

450

75

1.79

0.25

75

33

550

550

515

226

FS

11

1350

450

450

75

1.79

0.25

75

31

550

550

762

258

FS

12

1400

450

450

75

1.79

0.20

75

20

625

390

245

190

FS

13

1400

450

450

75

1.79

0.09

75

28

435

437

251

130

FS

14

1400

450

450

75

1.79

0.09

75

29

560

443

257

170

S

15

1400

450

450

75

1.79

0.19

75

29

560

443

257

210

S

16

1400

450

900

75

1.79

0.20

75

20

625

390

249

240

S

17

1400

450

900

75

1.79

0.09

75

28

435

437

251

190

S

18

1400

450

900

75

1.79

0.09

75

29

560

443

257

190

S

19

1400

450

900

75

1.79

0.19

75

29

560

443

257

250

S

20

900

600

400

100

0.88

0.12

120

17

540

655

136

278

FS

21

900

400

600

100

0.88

0.12

120

17

540

655

136

193

FS

22

1800

500

500

120

0.19

0.11

50

58

476

480

975

333

F

23

1800

500

500

120

0.19

0.11

50

63

476

480

1471

360

F

24

1800

500

500

120

0.19

0.06

40

70

476

480

983

332

F

25

1800

500

500

120

1.88

0.52

40

61

476

363

1449

350

FS

26

1500

500

500

120

1.88

0.52

40

51

476

363

1013

364

S

27

1500

500

500

120

1.88

0.52

40

50

476

363

544

302

FS

28

5400

1500

1500

300

1.90

0.28

150

34

476

480

4355

2350

FS

29

5400

1500

1500

300

1.90

0.28

150

29

476

480

8800

2610

S

30

5400

500

500

120

1.90

0.03

150

33

476

480

553

2440

F

31

5400

500

500

120

1.90

0.03

150

31

476

480

982

2840

F

32

1800

500

500

120

1.90

0.11

50

33

476

480

499

271

F

33

1500

500

500

120

1.90

0.03

50

20

476

405

501

270

S

34

1500

500

500

120

1.90

0.03

50

27

423

405

500

298

F

35

1500

500

500

120

1.90

0.03

50

29

423

405

499

295

F

36

1500

500

500

120

1.90

0.03

50

27

406

405

498

278

F

37

1800

500

500

120

1.90

0.11

50

28

406

480

500

241

F

38

2000

550

550

140

1.33

0.09

100

48

617

405

4418

429

F

39

2000

550

550

140

1.33

0.09

100

57

617

405

2617

316

F

40

2000

550

550

110

1.58

0.09

100

60

617

405

5432

423

FS

41

6500

1500

1500

300

1.08

0.11

80

34

460

343

4015

1580

F

42

4500

1500

1500

300

1.08

0.04

120

34

460

510

4015

2420

F

43

3500

1500

1500

300

1.72

0.03

200

32

418

420

3686

2650

S

44

4500

1000

1000

250

1.53

0.17

80

22

376

343

1650

671

F

45

4500

1000

1000

250

1.53

0.17

80

47

408

406

2468

727

F

46

900

600

900

130

1.80

0.01

900

25

340

340

0

525

FS

47

1200

600

900

130

1.80

0.01

1200

25

340

340

0

445

FS

48

1500

600

900

130

1.80

0.01

1500

25

340

340

0

341

FS

49

1800

600

900

130

1.80

0.00

1800

25

340

340

0

259

FS

50

900

600

900

80

2.70

0.01

900

25

340

340

0

337

S

51

900

600

900

180

1.80

0.01

900

25

340

340

0

522

FS

52

900

600

900

160

1.07

0.01

900

18

300

300

0

458

FS

53

900

600

900

130

1.26

0.01

900

18

300

300

0

392

FS

54

1200

600

900

130

1.26

0.01

1200

18

300

300

0

334

FS

55

1500

600

900

130

1.26

0.01

1500

18

300

300

0

269

FS

56

1800

600

900

130

1.26

0.00

1800

18

300

300

0

203

FS

57

900

600

900

130

0.63

0.01

900

18

300

300

0

381

FS

58

3500

1500

1500

300

1.69

0.03

200

32

418

420

3594

2633

S

59

3500

1500

1500

300

1.69

0.03

200

18

420

413

3888

2544

F

60

3500

1500

1500

300

1.69

0.03

200

38

418

420

3621

1530

S

61

2000

500

500

200

1.13

0.25

40

30

460

400

1350

178

S

62

2000

500

500

200

1.13

0.25

40

30

460

400

675

171

F

63

2000

500

500

200

1.13

0.13

80

25

460

400

675

173

F

64

2000

500

500

200

1.13

0.25

40

50

460

400

1350

215

F

65

2000

500

500

200

1.13

0.25

40

50

460

400

675

177

F

66

2000

500

500

200

1.13

0.13

80

36

460

400

675

173

F

67

1440

360

500

120

1.40

0.35

40

41

300

300

1001

147

F

68

1440

360

500

120

2.10

0.35

40

41

300

300

1001

146

F

69

1440

360

500

120

1.40

0.35

40

41

300

300

2002

223

F

70

1440

360

500

120

2.10

0.35

40

41

300

300

2002

225

F

71

1440

360

500

120

1.40

0.35

40

41

300

300

615

207

FS

72

1440

360

500

120

2.10

0.35

40

41

300

300

615

261

FS

73

2880

360

500

120

1.40

0.35

40

41

300

300

615

70

F

74

2880

360

500

120

2.10

0.35

40

41

300

300

615

72

F

75

2880

360

500

120

1.40

0.35

40

41

300

300

1229

106

F

76

2880

360

500

120

2.10

0.35

40

41

300

300

1229

197

F

77

2880

360

500

120

2.10

0.25

55

41

300

300

615

69

F

78

3600

360

500

120

1.40

0.35

40

41

300

300

615

93

F

79

3600

360

500

120

2.10

0.35

40

41

300

300

615

95

F

80

3600

360

500

120

1.40

0.35

40

41

300

300

1229

110

F

81

3600

360

500

120

2.10

0.35

40

41

300

300

1229

123

F

82

3600

360

500

120

2.10

0.25

55

41

300

300

615

93

F

83

3025

750

750

120

2.84

0.06

60

31

335

320

937

282

F

84

3025

750

750

120

2.84

0.13

30

31

335

320

4687

496

FS

85

3025

750

750

120

2.84

0.09

40

28

335

320

2540

415

FS

86

3025

750

750

120

2.84

0.06

60

28

335

320

2540

418

FS

87

5750

1020

2740

170

0.40

0.09

120

35

500

500

3663

1300

F

88

13,250

1020

2740

170

0.70

0.09

120

35

500

500

3663

800

F

89

4200

730

975

150

6.41

0.27

40

57

393

390

1880

1124

F

90

4200

730

975

150

6.41

0.27

40

49

393

390

430

1084

F

91

1420

500

360

100

1.40

0.04

150

39

335

235

510

105

F

92

4500

1000

1000

250

1.53

0.17

80

47

408

406

2468

727

F

93

4500

1000

1000

250

1.38

0.17

80

47

408

406

2468

699

F

94

4500

1000

1000

250

1.38

0.11

120

47

408

406

2468

697

F

95

1200

320

320

85

1.57

0.34

50

34

295

345

0

70

S

96

1200

320

320

85

1.57

0.17

50

34

295

345

299

90

F

97

1200

320

320

85

1.57

0.34

50

34

295

345

299

85

F

98

650

320

320

85

1.57

0.17

50

34

295

345

299

175

S

99

650

320

320

85

1.57

0.34

50

34

295

345

299

190

S

100

4000

890

1000

70

0.98

0.26

50

39

437

374

1921

212

FS

101

4500

1000

1000

250

1.53

0.17

80

23

376

343

1710

671

FS

102

4500

1000

1000

250

1.38

0.17

80

23

376

343

1710

647

FS

103

1800

400

250

80

2.65

0.06

110

45

270

335

527

77

F

104

1800

400

250

80

2.65

0.06

110

45

270

335

702

82

F

105

1800

400

250

80

2.65

0.06

110

45

270

335

1054

84

F

106

1800

400

250

80

2.65

0.06

110

38

270

335

601

82

F

107

1350

400

400

100

2.53

0.07

100

24

374

363

230

200

FS

108

3780

840

840

150

1.15

0.16

60

59

390

343

1650

490

F

109

3780

840

840

150

1.15

0.08

120

40

390

343

1650

490

F

110

2100

840

840

150

1.15

0.16

60

45

390

343

1633

800

FS

111

2100

840

840

150

1.15

0.08

120

45

390

343

1633

800

FS

112

3780

840

840

150

1.15

0.16

60

40

390

343

1650

490

F

113

3780

840

840

150

1.15

0.16

60

50

357

343

1650

780

FS

114

2100

840

840

150

3.07

0.16

60

50

357

343

1633

1350

FS

115

1240

500

360

100

0.91

1.60

60

64

335

235

840

96

F

116

1240

500

360

100

1.33

1.60

60

64

335

235

840

186

F

117

1440

500

360

120

1.40

0.14

40

41

393

389

615

195

F

118

1440

500

360

120

1.40

0.14

40

41

393

389

1229

294

F

119

3500

1500

1500

300

1.08

0.03

200

33

423

392

3756

2600

S

120

8400

800

1600

160

1.15

0.03

200

51

500

700

1700

530

F

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, XB., Tran, VL., Phan, HT. et al. Predicting shear capacity of rectangular hollow RC columns using neural networks. Asian J Civ Eng 25, 2509–2520 (2024). https://doi.org/10.1007/s42107-023-00924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00924-7

Keywords

Navigation