Skip to main content
Log in

Shear strength prediction of concrete beams reinforced with FRP bars using novel hybrid BR-ANN model

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Shear strength is a very important parameter in designing of reinforced concrete beams or concrete beams reinforced with fiber-reinforced polymer (FRP) bars. So far, numerous studies and design codes have proposed empirical-based formulas for predicting the shear strength of FRP-concrete beams. However, a difference exists between the proposed formulas and experimental results. This study predicts the shear strength of FRP-concrete beams using the novel hybrid BR-ANN model, which integrates artificial neural network (ANN) and Bayesian regularization (BR). For that, a comprehensive database consisting of 303 experimental results is compiled for developing the BR-ANN models. The performance results of BR-ANN are compared with those of 15 existing empirical formulas, which were proposed in typical design codes and well-known published studies. The predicted outputs are evaluated utilizing indicators, which are goodness of fit (\({R}^{2}\)), root mean squared error (\(\mathrm{RMSE}\)), and mean value of the ratio \({V}_{\mathrm{predict}} /{V}_{\mathrm{test}}\). The results reveal that the BR-ANN model outperforms other empirical formulas with a very high \({R}^{2}\) (0.987), very small \(\mathrm{RMSE}\) (7.3 kN). In addition, the mean value of the ratio \({V}_{\mathrm{predict}} /{V}_{\mathrm{test}}\) is equal to unity. Moreover, effects of input variables on the shear strength are evaluated. Finally, a practical design tool is developed to apply the BR-ANN model in calculating the shear strength of FRP-concrete beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article.

References

  • AASHTO, L. (2009). Bridge design guide specifications for GFRP-reinforced concrete bridge decks and traffic railings. The American Association of State Highway and Transportation Officials.

    Google Scholar 

  • ACI. (2015). ACI 440.1 R-15: Guide for the design & construction of structural concrete reinforced with FRP bars. American Concrete Institute.

    Google Scholar 

  • Ahmed, A., Elkatatny, S., Ali, A., Mahmoud, M., & Abdulraheem, A. (2019). New model for pore pressure prediction while drilling using artificial neural networks. Arabian Journal for Science and Engineering, 44, 6079–6088. https://doi.org/10.1007/s13369-018-3574-7

    Article  Google Scholar 

  • Askar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17, e01189.

    Article  Google Scholar 

  • Asteris, P. G., and Mokos, V. G. (2019). Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 32(15), 11807–11826.

  • Bentz, E. C., Massam, L., & Collins, M. P. (2010). Shear strength of large concrete members with FRP reinforcement. Journal of Composites for Construction, 14, 637–646.

    Article  Google Scholar 

  • BISE. (1999). Interim guidance on the design of reinforced concrete structures using fiber composite reinforcement. British Institution of Structural Engineers Seto Ltd.

    Google Scholar 

  • Burden, F., & Winkler, D. (2009). Bayesian regularization of neural networks. In: D. J. Livingstone (Ed.), Artificial neural networks. Methods in molecular biology™, vol 458. Humana Press. https://doi.org/10.1007/978-1-60327-101-1_3

  • CNR-DT203. (2007). Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. Advisory Committee on Technical Recommendations for Construction.

    Google Scholar 

  • CSA. (2012). S806–12: Design & construction of building structures with fibre reinforced polymers. Canadian Standards Association.

    Google Scholar 

  • Deitz, D., Harik, I., & Gesund, H. (1999). One-way slabs reinforced with glass fiber reinforced polymer reinforcing bars. Special Publication, 188, 279–286.

    Google Scholar 

  • Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization (pp. 1942–1948). Citeseer.

    Google Scholar 

  • El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear strength of FRP-reinforced concrete beams without transverse reinforcement. ACI Materials Journal, 103, 235.

    Google Scholar 

  • Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning. In: IEEE, pp. 1930–1935.

  • Hoult, N., Sherwood, E., Bentz, E. C., & Collins, M. P. (2008). Does the use of FRP reinforcement change the one-way shear behavior of reinforced concrete slabs? Journal of Composites for Construction, 12, 125–133.

    Article  Google Scholar 

  • ISIS-M03. (2007). Reinforcing concrete structures with fiber reinforced polymers. Canadian network of Centers of Excellence on Intelligent Sensing for Innovative Structures, University of Winnipeg.

    Google Scholar 

  • JSCE. (1997). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials (Vol. 23). Japan Society of Civil Engineers, Concrete Engineering Series.

    Google Scholar 

  • Jumaa, G. B., & Yousif, A. R. (2018). Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis. Advances in Civil Engineering, 2018, 1–16.

    Article  Google Scholar 

  • Kara, I. F. (2011). Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming. Advances in Engineering Software, 42, 295–304.

    Article  Google Scholar 

  • Kaveh, A., & Bondarabady, H. R. (2004). Wavefront reduction using graphs, neural networks and genetic algorithm. International Journal for Numerical Methods in Engineering, 60, 1803–1815.

    Article  Google Scholar 

  • Kaveh, A., Gholipour, Y., & Rahami, H. (2008). Optimal design of transmission towers using genetic algorithm and neural networks. International Journal of Space Structures, 23, 1–19.

    Article  Google Scholar 

  • Kaveh, A., & Khalegi, A. (1998). Prediction of strength for concrete specimens using artificial neural networks. In B. H. V. Topping (Ed.), Advances in engineering computational technology (pp. 165–171). Edinburgh, UK: Civil-Comp Press, https://doi.org/10.4203/ccp.53.4.3.

  • Kaveh, A., & Khavaninzadeh, N. (2023). Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength (pp. 256–272). Elsevier.

    Google Scholar 

  • Kaveh, A., & Servati, H. (2001). Design of double layer grids using backpropagation neural networks. Computers & Structures, 79, 1561–1568.

    Article  Google Scholar 

  • Mai, S. H., Tran, V.-L., Nguyen, D.-D., Nguyen, V. T., & Thai, D.-K. (2022). Patch loading resistance prediction of steel plate girders using a deep artificial neural network and an interior-point algorith. Steel and Composite Structures, 45, 159.

    Google Scholar 

  • Marani, A., & Nehdi, M. L. (2022). Predicting shear strength of FRP-reinforced concrete beams using novel synthetic data driven deep learning. Engineering Structures, 257, 114083.

    Article  Google Scholar 

  • Michaluk, C. R., Rizkalla, S. H., Tadros, G., & Benmokrane, B. (1998). Flexural behavior of one-way concrete slabs reinforced by fiber reinforced plastic reinforcements. Structural Journal, 95, 353–365.

    Google Scholar 

  • Naderpour, H., Poursaeidi, O., & Ahmadi, M. (2018). Shear resistance prediction of concrete beams reinforced by FRP bars using artificial neural networks. Measurement, 126, 299–308.

    Article  Google Scholar 

  • Nehdi, M., El Chabib, H., & Saïd, A. A. (2007). Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach. Journal of Materials in Civil Engineering, 19, 1033–1042.

    Article  Google Scholar 

  • Nguyen, D.-D., Tran, V.-L., Ha, D.-H., Nguyen, V.-Q., & Lee, T.-H. (2021a). A machine learning-based formulation for predicting shear capacity of squat flanged RC walls (pp. 1734–1747). Elsevier.

    Google Scholar 

  • Nguyen, T.-H., Tran, N.-L., & Nguyen, D.-D. (2021b). Prediction of axial compression capacity of cold-formed steel oval hollow section columns using ANN and ANFIS models. International Journal of Steel Structures. https://doi.org/10.1007/s13296-021-00557-z

    Article  Google Scholar 

  • Nguyen, T.-H., Tran, N.-L., & Nguyen, D.-D. (2021c). Prediction of critical buckling load of web tapered I-section steel columns using artificial neural networks. International Journal of Steel Structures, 21(4), 1159–1181.

    Article  Google Scholar 

  • Nguyen, T.-H., Tran, N.-L., Phan, V.-T., & Nguyen, D.-D. (2023a). Improving axial load-carrying capacity prediction of concrete columns reinforced with longitudinal FRP bars using hybrid GA-ANN model. Asian Journal of Civil Engineering, 1–11. https://doi.org/10.1007/s42107-023-00695-1

  • Nguyen, T. -H., Tran, N. -L., Phan, V. -T., & Nguyen, D.-D. (2023b). Prediction of shear capacity of RC beams strengthened with FRCM composite using hybrid ANN-PSO model. Case Studies in Construction Materials, 18, e02183.

    Article  Google Scholar 

  • Nguyen, V.-Q., Tran, V.-L., Nguyen, D.-D., Sadiq, S., & Park, D. (2022). Novel hybrid MFO-XGBoost model for predicting the racking ratio of the rectangular tunnels subjected to seismic loading. Transportation Geotechnics, 37, 100878.

    Article  Google Scholar 

  • Nikoo, M., Aminnejad, B., & Lork, A. (2021). Predicting shear strength in FRP-reinforced concrete beams using bat algorithm-based artificial neural network. Advances in Materials Science and Engineering, 2021, 1–13.

    Article  Google Scholar 

  • Peng, F., Xue, W., & Xue, W. (2020). Database evaluation of shear strength of slender fiber-reinforced polymer-reinforced concrete members. ACI Structural Journal, 117, 273–281.

    Google Scholar 

  • Rönnholm, M., Arve, K., Eränen, K., Klingstedt, F., Salmi, T., & Saxén, H. (2005). ANN modeling applied to NO X reduction with octane. Ann future in personal vehicles. In B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, & N. C. Steele (Eds.), Adaptive and Natural Computing Algorithms (pp. 100–103). Springer. https://doi.org/10.1007/3-211-27389-1_24

    Chapter  Google Scholar 

  • Selvan, S. S., Pandian, P. S., Subathira, A., & Saravanan, S. (2018). Comparison of response surface methodology (RSM) and artificial neural network (ANN) in optimization of aegle marmelos oil extraction for biodiesel production. Arabian Journal for Science and Engineering, 43, 6119–6131. https://doi.org/10.1007/s13369-018-3272-5

    Article  Google Scholar 

  • Shehata, E. F. (1999). Fibre-reinforced polymer (FRP) for shear reinforcement in concrete structures. Ph.D. dissertation (University of Manitoba, Winnipeg, Canada).

  • Simon, D. (2013). Evolutionary optimization algorithms. Wiley.

    Google Scholar 

  • Sivanandam, S., Deepa, S., Sivanandam, S., & Deepa, S. (2008). Genetic algorithms. Springer.

    Google Scholar 

  • Tottori, S., & Wakui, H. (1993). Shear capacity of RC and PC beams using FRP reinforcement. Special Publication, 138, 615–632.

    Google Scholar 

  • Tran, N.-L., Nguyen, D.-D., & Nguyen, T.-H. (2022). Prediction of speed limit of cars moving on corroded steel girder bridges using artificial neural networks. Sādhanā, 47, 1–14.

    Article  Google Scholar 

  • Tran, V.-L., & Kim, S.-E. (2020). Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns. Thin-Walled Structures, 152, 106744. https://doi.org/10.1016/j.tws.2020.106744

    Article  Google Scholar 

  • Tran, V.-L., & Nguyen, D.-D. (2022). Novel hybrid WOA-GBM model for patch loading resistance prediction of longitudinally stiffened steel plate girders. Thin-Walled Structures, 177, 109424.

    Article  Google Scholar 

  • Tureyen, A. K., & Frosch, R. J. (2002). Shear tests of FRP-reinforced concrete beams without stirrups. Structural Journal, 99, 427–434.

    Google Scholar 

  • Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13–22. https://doi.org/10.1016/j.neucom.2017.09.099

    Article  Google Scholar 

  • Wakjira, T. G., Al-Hamrani, A., Ebead, U., & Alnahhal, W. (2022). Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models. Composite Structures, 287, 115381.

    Article  Google Scholar 

  • Xue, W., Peng, F., & Zheng, Q. (2016). Design equations for flexural capacity of concrete beams reinforced with glass fiber–reinforced polymer bars. Journal of Composites for Construction, 20, 04015069.

    Article  Google Scholar 

Download references

Funding

No funding was used in this study.

Author information

Authors and Affiliations

Authors

Contributions

T-HN: conceptualization, software, visualization, writing—original draft. X-BN: methodology, data curation, writing—original draft. V-HN: validation; visualization. T-HTN: validation; visualization. D-DN: methodology, formal analysis, writing—original draft, writing—review and editing, supervision.

Corresponding author

Correspondence to Duy-Duan Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. The used database

Appendix. The used database

ID

\(b_{{\text{w}}}\) (mm)

\(d\) (mm)

\(a/d\)

\(a\) (mm)

\(f_{{\text{c}}}{\prime}\) (MPa)

\(\rho_{{\text{l}}}\) (%)

\(E_{{\text{f}}}\) (GPa)

\(E_{{\text{c}}}\) (MPa)

\(V\) (kN)

1

229

225

4.1

914

36

1.11

40.34

20

39.1

2

178

225

4.1

914

36

1.42

40.34

20

32.5

3

229

225

4.1

914

36

1.65

40.34

20

45.4

4

279

225

4.1

914

36

1.81

40.34

20

46.5

5

254

225

4.1

914

36

2.05

40.34

20

46.2

6

229

225

4.1

914

36

2.27

40.34

20

43.2

7

1000

165

6.06

1000

40

0.39

114

20

143.8

8

1000

165

6.06

1000

40

0.78

114

20

170.8

9

1000

161

6.21

1000

40

1.17

114

20

193.8

10

1000

162

6.17

1000

40

0.86

40

20

116.8

11

1000

159

6.29

1000

40

1.7

40

20

145.8

12

1000

162

6.17

1000

40

1.71

40

20

166.8

13

1000

159

6.29

1000

40

2.44

40

20

166.8

14

1000

154

6.49

1000

40

2.63

40

20

171.8

15

250

326

3.07

1000

50

0.87

128

20

79.7

16

250

326

3.07

1000

50

0.87

39

20

72.7

17

250

326

3.07

1000

45

1.24

134

20

106.2

18

250

326

3.07

1000

45

1.22

42

20

62.2

19

250

326

3.07

1000

44

1.72

134

20

126.7

20

250

326

3.07

1000

44

1.71

42

20

79.7

21

250

326

3.07

1000

63

1.71

135

20

132.2

22

250

326

3.07

1000

63

1.71

42

20

89.2

23

250

326

3.07

1000

63

2.2

135

20

176.2

24

250

326

3.07

1000

63

2.2

42

20

117.7

25

600

262

6.68

1750

68

0.77

48

20

89.2

26

600

262

6.68

1750

68

1.53

48

20

116.2

27

150

180

3.7

667

28

0.45

38

20

13

28

150

220

3.03

667

28

0.71

32

20

18.1

29

150

240

2.78

667

28

0.86

32

20

25.8

30

150

180

3.7

667

49

1.39

32

20

18

31

150

220

3.03

667

49

1.06

32

20

28.1

32

150

240

2.78

667

49

1.15

32

20

30.8

33

457

360

3.4

1219

35

0.96

40.54

20

108.1

34

457

360

3.4

1219

35

0.96

37.88

20

94.7

35

457

360

3.4

1219

35

0.96

47.1

20

114.8

36

457

360

3.4

1219

35

1.92

40.54

20

137

37

457

360

3.4

1219

35

1.92

37.88

20

152.6

38

457

360

3.4

1219

35

1.92

47.1

20

177

39

200

225

2.67

600

41

0.25

145

20

37

40

200

225

2.67

600

49

0.5

145

20

47.9

41

200

225

2.67

600

41

0.63

145

20

48.1

42

200

225

2.67

600

41

0.88

145

20

43.6

43

200

225

3.56

800

41

0.5

145

20

47.8

44

200

225

4.5

950

41

0.5

145

20

39.2

45

150

250

3

750

34

1.51

105

20

45.6

46

150

250

3

750

34

3.02

105

20

46.6

47

150

250

3

750

34

2.27

105

20

41.1

48

178

279

2.69

750

24

2.3

40

20

54

49

178

287

2.61

750

24

0.77

40

20

36.6

50

178

287

2.61

750

24

1.34

40

20

40.6

51

160

346

2.75

952

37

0.72

42

20

60.3

52

160

346

3.32

1149

43

1.1

42

20

45.1

53

160

325

3.54

1151

34

1.54

42

20

47.8

54

130

310

3.06

949

37

0.72

120

20

48.5

55

130

310

3.71

1150

43

1.1

120

20

51

56

130

310

3.71

1150

34

1.54

120

20

57.9

57

305

158

4.5

710

29

0.73

40

20

27.8

58

305

158

5.8

913

30

0.73

40

20

29.6

59

305

158

5.8

913

27

0.73

40

20

30.5

60

150

210

3.65

767

38

1.31

45

20

27.2

61

150

210

3.65

767

33

1.36

45

20

22.7

62

450

937

3.26

3050

46

0.51

37

20

142.3

63

450

438

3.48

1525

35

0.55

37

20

87.8

64

450

194

3.93

762

35

0.66

37

20

55.1

65

450

857

3.56

3050

36

2.23

37

20

240.3

66

450

405

3.77

1525

35

2.36

37

20

140.3

67

450

188

4.05

762

35

2.54

37

20

74.6

68

200

220

2.5

550

30

0.32

146.2

20

35.4

69

150

220

2.5

550

30

0.43

146.2

20

25

70

150

220

2.5

550

30

0.77

147.9

20

26.1

71

200

220

3.5

770

30

0.32

146.2

20

29.4

72

150

220

3.5

770

30

0.43

146.2

20

26.9

73

150

220

3.5

770

30

0.77

147.9

20

29.6

74

200

220

4.5

990

30

0.32

146.2

20

26.6

75

150

220

4.5

990

30

0.43

146.2

20

24.6

76

150

220

4.5

990

30

0.77

147.9

20

28.1

77

200

220

2.5

550

30

0.32

48.2

20

25.7

78

150

220

2.5

550

30

0.43

48.2

20

24.4

79

150

220

2.5

550

30

0.77

49.1

20

27.3

80

200

220

3.5

770

30

0.32

48.2

20

27.2

81

150

220

3.5

770

30

0.43

48.2

20

21.1

82

150

220

3.5

770

30

0.77

49.1

20

19.5

83

200

220

4.5

990

30

0.32

48.2

20

20

84

150

220

4.5

990

30

0.43

48.2

20

17.2

85

150

220

4.5

990

30

0.77

49.1

20

20.5

86

200

220

3

660

34

0.32

146.2

20

26.2

87

150

220

3

660

34

0.43

146.2

20

19.2

88

200

220

3

660

40

0.32

146.2

20

23.6

89

150

220

3

660

40

0.43

146.2

20

21.4

90

150

220

3

660

40

0.77

147.9

20

26.5

91

200

220

3

660

34

0.32

48.2

20

21.1

92

150

220

3

660

34

0.43

48.2

20

18.9

93

200

220

3

660

40

0.32

48.2

20

20.8

94

150

220

3

660

40

0.43

48.2

20

20.3

95

150

220

3

660

40

0.77

49.1

20

21.8

96

150

223

3.3

750

40

1.1

45

20

27.9

97

457

883

3.1

2743

30

0.6

41

20

179.6

98

457

883

3.1

2743

30

0.6

41

20

176.9

99

114

292

3.1

914

32

0.6

43.2

20

19.8

100

114

292

3.1

914

32

0.6

43.2

20

18.5

101

229

146

3.1

457

60

0.6

43.2

20

29

102

229

146

3.1

457

32

0.6

43.2

20

37.3

103

229

146

3.1

457

32

0.6

43.2

20

26.7

104

457

880

3.1

2743

30

1.2

41

20

246.2

105

457

880

3.1

2743

31

1.2

41

20

238.2

106

114

292

3.1

914

41

1.21

48.2

20

22.6

107

114

292

3.1

914

41

1.21

48.2

20

21.2

108

229

146

3.1

457

41

1.2

48.2

20

33.4

109

229

146

3.1

457

41

1.2

48.2

20

32.9

110

150

180

5.6

1000

20

0.87

115

20

19.1

111

150

180

5.6

1000

20

1.46

115

20

24.4

112

150

180

5.6

1000

27

0.87

115

20

26.2

113

150

180

5.6

1000

27

1.46

115

20

27.5

114

250

305

2.5

763

39

0.84

48

20

62.8

115

250

305

3.5

1068

39

0.84

48

20

45.9

116

250

310

2.5

775

33

0.42

144

20

79

117

250

310

3.5

1085

33

0.42

144

20

61.1

118

250

440

2.5

1100

43

0.89

48

20

132.5

119

300

584

2.5

1460

36

0.91

48

20

118.1

120

250

442

2.5

1105

72

1.46

48.2

20

119.2

121

300

578

2.5

1445

72

1.51

48.2

20

160.5

122

250

460

2.5

1150

41

0.44

144

20

67.6

123

300

594

2.5

1485

36

0.43

144

20

143.7

124

250

449

2.5

1123

72

0.82

144

20

103.5

125

300

594

2.5

1485

72

0.73

144

20

151.3

126

250

296

2.5

740

36

1.41

46.3

20

67.3

127

250

296

2.5

740

36

1.41

46.3

20

72.7

128

250

455

2.5

1138

41

0.35

46.3

20

71.1

129

250

434

2.5

1085

41

1.46

46.3

20

95.3

130

250

310

2.5

775

41

0.18

144

20

60.5

131

250

310

2.5

775

41

0.66

144

20

74.3

132

250

460

2.5

1150

41

0.22

144

20

73.3

133

250

439

2.5

1098

41

0.65

144

20

85.6

134

250

291

2.5

728

63

0.87

46.3

20

77.4

135

250

291

2.5

728

85

0.87

46.3

20

82

136

250

310

2.5

775

63

0.42

144

20

73.4

137

300

150

4

600

23

1.34

29

20

33.5

138

300

150

4

600

28

1.79

29

20

36.5

139

154

222

3.15

699

39

1.55

34

20

39.7

140

635

202

6.04

1220

72

0.94

43.3

20

138.4

141

635

202

6.04

1220

87

0.94

43.3

20

136.6

142

635

202

6.04

1220

60

0.94

43.3

20

125

143

635

202

6.04

1220

63

0.94

43.3

20

113.9

144

635

202

6.04

1220

75

0.94

43.3

20

104.1

145

635

202

6.04

1220

60

0.94

43.3

20

104.6

146

635

227

4.47

1015

68

0.94

43.3

20

124

147

635

240

6.04

1450

79

0.79

43.3

20

109

148

635

240

6.04

1450

61

0.79

43.3

20

126.4

149

635

240

6.04

1450

63

0.79

43.3

20

101

150

635

240

6.04

1450

67

0.79

43.3

20

106.8

151

1854

202

6.04

1220

84

0.96

43.3

20

396.3

152

1854

202

6.04

1220

59

0.96

43.3

20

330

153

1854

202

6.04

1220

63

0.96

43.3

20

279.3

154

1854

202

6.04

1220

63

0.96

43.3

20

294.9

155

1854

202

6.04

1220

57

0.96

43.3

20

303.8

156

1854

202

6.04

1220

56

0.96

43.3

20

307.3

157

1854

202

6.04

1220

84

0.54

43.3

20

282.9

158

1854

202

6.04

1220

63

0.54

43.3

20

254

159

1854

202

6.04

1220

56

0.54

43.3

20

225.9

160

300

200

3.5

700

52

0.35

114

20

64.6

161

300

300

3.5

1050

52

0.32

114

20

62.3

162

300

400

3.5

1400

52

0.3

114

20

57.3

163

300

500

3.5

1750

52

0.28

114

20

71.5

164

300

400

6.5

2600

52

0.3

114

20

55.2

165

300

400

6

2400

52

0.3

114

20

65.9

166

150

280

2.5

700

45

0.11

148

20

23.2

167

150

280

5

1400

49

0.11

148

20

13.6

168

150

280

2.5

700

46

0.21

148

20

28.2

169

150

280

2.5

700

24

0.11

148

20

23.2

170

400

250

3

750

51

0.57

47.5

20

57.1

171

400

250

3

750

49

0.86

47.5

20

75.1

172

400

250

3

750

51

1.14

47.5

20

86.1

173

400

250

3

750

51

1.71

47.5

20

109.1

174

400

250

3

750

52

2.28

47.5

20

116.1

175

400

250

3

750

50

0.86

47.5

20

79.1

176

400

250

4

1000

51

1.14

47.5

20

90.4

177

400

250

6

1500

50

1.71

47.5

20

91.1

178

400

250

8

2000

48

2.28

47.5

20

84.8

179

400

250

3

750

51

4.05

51.9

20

136.1

180

400

250

8

2000

48

4.05

51.9

20

99.8

181

200

250

4

1000

31

0.68

41.3

20

24.5

182

200

250

4

1000

31

0.79

41.3

20

26.6

183

200

250

4

1000

31

1.08

41.3

20

33.4

184

200

250

3

750

35

0.51

41.3

20

30.5

185

200

250

3

750

35

0.76

41.3

20

39.9

186

200

250

3

750

35

1.01

41.3

20

37.8

187

200

370

2.7

1000

22

0.12

141

20

34.7

188

200

370

2.7

1000

22

0.24

141

20

37.9

189

200

270

3.6

1000

29

0.16

141

20

34.2

190

200

270

3.6

1000

29

0.33

141

20

34.2

191

200

170

5.9

1000

24

0.26

141

20

18.5

192

200

170

5.9

1000

24

0.52

141

20

21.7

193

1000

140

6.07

850

48

1.01

41

20

100.6

194

1000

140

6.07

850

48

0.79

47.6

20

125.1

195

1000

140

6.07

850

48

1.01

47.6

20

112.1

196

1000

140

6.07

850

48

1.22

47.6

20

125.1

197

1000

140

6.07

850

50

1.42

47.6

20

170

198

1000

137.5

6.18

850

48

1.85

51.9

20

151.8

199

1000

140

6.07

850

43

1.01

69.5

20

174.6

200

1000

140

6.07

850

49

1.21

69.5

20

128.1

201

1000

140

6.07

850

49

2.43

69.5

20

126.6

202

1000

137.5

6.18

850

50

2.55

69.5

20

127.6

203

1000

140

6.07

850

77

1.01

69.5

20

161.3

204

1000

140

6.07

850

83

1.03

69.5

20

143.7

205

1000

143.5

5.92

850

50

0.45

144

20

173.9

206

1000

143.5

5.92

850

50

0.54

144

20

147.6

207

1000

143.5

5.92

850

52

0.63

144

20

165.6

208

1000

143.5

5.92

850

45

0.72

144

20

163.6

209

1000

143.5

5.96

855

46

0.84

140

20

179.6

210

1000

143.5

5.96

855

49

0.98

140

20

192.6

211

1000

143.5

5.96

855

41

1.11

140

20

198.6

212

1000

143.5

5.92

850

76

0.63

144

20

174.6

213

1000

143.5

5.92

850

86

0.63

144

20

219.4

214

203

225

4.06

914

80

1.25

40.3

20

38.9

215

152

225

4.06

914

80

1.66

40.3

20

33.2

216

165

225

4.06

914

80

2.1

40.3

20

36.5

217

203

224

4.06

914

80

2.56

40.3

20

47.3

218

127

143

6.36

909

60

0.33

139

20

14.3

219

159

141

6.45

909

62

0.58

139

20

20.3

220

89

143

6.36

909

81

0.47

139

20

10

221

121

141

6.45

909

81

0.76

139

20

15.7

222

150

250

3

750

28

0.55

94

20

38.3

223

150

250

3

750

33

1.1

94

20

43.8

224

150

250

3

750

31

1.39

94

20

48.3

225

150

250

3

750

35

2.2

94

20

59.1

226

150

250

2.5

625

34

1.04

100

20

38.8

227

300

500

2.5

1250

30

1.04

100

20

145.4

228

150

170

4.12

700

24

0.92

45.8

20

12.7

229

150

170

4.12

700

24

1.54

45.8

20

13.6

230

150

170

4.12

700

31

0.92

45.8

20

14.1

231

150

170

4.12

700

31

1.54

45.8

20

15.3

232

300

441

3.02

1330

42

3.65

62.6

20

145.4

233

300

412

3.16

1300

43

3.25

44

20

153.9

234

300

404

3.71

1500

28

3.98

62.6

20

107.6

235

420

83

3.61

300

61

0.61

42

20

19.9

236

420

82

6.1

500

61

1.1

42

20

25.5

237

420

80

6.25

500

61

1.77

40

20

32

238

420

78

6.41

500

61

2.61

40

20

40.5

239

420

83

3.61

300

74

0.61

42

20

24.9

240

420

82

6.1

500

74

1.1

42

20

22

241

420

80

6.25

500

74

1.77

40

20

32

242

420

78

6.41

500

74

2.61

40

20

36.5

243

420

83

3.61

300

93

0.61

42

20

35.9

244

420

82

6.1

500

93

1.1

42

20

23

245

420

80

6.25

500

93

1.77

40

20

32

246

420

78

6.41

500

93

2.61

40

20

38.5

247

420

75

6

450

48

0.68

42

20

24.8

248

420

73

6.16

450

48

0.93

42

20

27.6

249

420

73

6.16

450

48

1.16

42

20

29.6

250

420

75

6

450

76

0.68

42

20

27.5

251

420

73

6.16

450

76

0.93

42

20

26.5

252

420

73

6.16

450

76

1.16

42

20

31.4

253

420

75

6

450

92

0.68

42

20

23.7

254

420

73

6.16

450

92

0.93

42

20

25.7

255

420

73

6.16

450

92

1.16

42

20

34.5

256

150

270

4.07

1100

60

0.39

70

20

19.8

257

150

270

4.07

1100

60

0.51

70

20

23

258

200

270

2.5

675

47

1.82

64

20

82.1

259

200

270

2.5

675

47

2.23

64

20

75.7

260

200

270

2.5

675

47

2.51

64

20

63.1

261

400

575

2.92

1680

32

1

61.2

20

159.5

262

400

575

2.92

1680

40

1

71.2

20

169

263

400

575

2.92

1680

102

1

61.2

20

166

264

600

262

6.68

1750

58

0.76

55.4

20

89.2

265

600

262

6.68

1750

58

1.51

55.4

20

116.2

266

1200

180

5.8

1050

33

0.66

44

20

140.7

267

1200

180

5.8

1050

33

0.88

44

20

151.7

268

1200

180

5.8

1050

33

1.1

44

20

158.7

269

1200

180

5.8

1050

33

0.33

50

20

102.8

270

1200

180

5.8

1050

33

0.44

50

20

133.1

271

1200

180

5.8

1050

33

0.57

50

20

166.6

272

152

220

3.3

725

49

0.3

50

20

17.4

273

152

220

3.3

725

49

0.47

50

20

23.5

274

152

220

3.3

725

49

0.68

50

20

19

275

152

220

3.3

725

49

0.94

50

20

28.4

276

152

220

3.3

725

49

1.35

50

20

30.4

277

152

220

2.5

550

49

0.3

50

20

20

278

152

220

2.5

550

49

0.47

50

20

32.1

279

152

220

2.5

550

49

0.68

50

20

27.5

280

200

170

5.56

945

36

1.21

53

20

30.9

281

200

170

5.56

945

36

2

51

20

40.3

282

200

170

5.56

945

36

3.09

51

20

46.8

283

200

170

7

1190

36

3.74

51

20

41.6

284

200

165

7

1155

36

4.64

48

20

49.8

285

200

165

7

1155

36

6.18

48

20

52.9

286

100

180

5.56

1000

41

0.74

40.8

20

10.2

287

100

180

5.56

1000

41

1.48

40.8

20

12.3

288

100

180

5.56

1000

66

0.35

124

20

9.1

289

100

180

5.56

1000

66

0.71

124

20

14.2

290

150

379

2.9

1100

31

0.99

51.5

20

35.3

291

150

377

2.92

1100

33

1.07

51.5

20

32.8

292

150

376

2.93

1100

33

1.35

51.5

20

39.6

293

150

377

2.92

1100

31

1.42

51.5

20

35.8

294

150

376

2.93

1100

33

1.8

51.5

20

39.2

295

150

368

2.99

1100

31

1.02

51.5

20

35.8

296

150

367

3

1100

33

1.85

51.5

20

48.8

297

100

566

3.53

2000

34

8.52

59

20

131.8

298

100

566

3.53

2000

80

11.36

59

20

189.8

299

100

572

3.5

2000

43

8.43

59

20

141.8

300

100

561

3.57

2000

75

11.46

62.6

20

210.8

301

100

572

3.5

2000

37

8.43

62.6

20

127.8

302

110

195

2.5

488

35

0.66

124

20

19.7

303

200

236.2

3.05

720

35

2.1

62.6

20

63.9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TH., Nguyen, XB., Nguyen, VH. et al. Shear strength prediction of concrete beams reinforced with FRP bars using novel hybrid BR-ANN model. Asian J Civ Eng 25, 1753–1771 (2024). https://doi.org/10.1007/s42107-023-00876-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00876-y

Keywords

Navigation