Effect of near-field earthquake excitation on seismic behavior of knee-braced moment frames

  • Vahid JafariEmail author
  • Abbas Akbarpour
Original Paper


Inelastic behavioral characteristics of knee-braced moment-resisting frames having 3, 8 or, 12 stories were investigated under near-source earthquake excitation using initially pinned frames that were subsequently substituted with rigid knee elements. These frames were designed so that the knee braces would yield and buckle under seismic loading. Inelastic time-history analysis was carried out to assess the structural performance of the buildings by evaluating the maximum axial forces of the columns, vertical displacement of internal beams, roof horizontal displacement, and maximum base shear of columns in the building members using PERFORM-3D software. The nonlinear behavior of the frames was investigated by comparing the results of pinned and rigid knee elements subjected to near-field earthquakes. The results indicate that rigid-to-pinned connections for knee elements can increase the axial forces of columns by nearly 15% for a 3-story building and about 7% for 8- and 12-story buildings. The vertical displacement of the beams was noticeable, especially for the three-story building. The horizontal displacement of the roof and base shear of columns using pinned connections for knee elements were generally greater than for the rigid connections.


Near-field earthquake Knee elements Steel structures Knee-braced moment frames 



The author would like to express his deepest gratitude to Dr. Hossein Abdollahiparsa and Dr. Mitra Heydari for always giving encouragement and providing invaluable suggestions.


  1. Aristizabal-Ochoa, J. D. (1986). Disposable knee bracing: improvement in seismic design of steel frames. Journal of Structural Engineering, ASCE, 112(7), 1544–1552.CrossRefGoogle Scholar
  2. Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501.CrossRefGoogle Scholar
  3. Balendra, T., Lim, E. L., & Lee, S. L. (1994). Ductile knee-braced frames with shear yielding knee for seismic resistant structures. Engineering Structures, 16(4), 263–269.CrossRefGoogle Scholar
  4. Balendra, T., Lim, E. L., & Liaw, C. Y. (1997). Large-scale seismic testing of knee-brace-frame. Journal of Structural Engineering, 123(1), 11–19.CrossRefGoogle Scholar
  5. BHRC (Building and Housing Research Center). (2005). Iranian code of practice for seismic resistant design of buildings, standard no. 2800-05 (3rd ed.). Tehran: Building and Housing Re-search Center.Google Scholar
  6. Bruneau, M., Uang, C. M., & Whittaker, A. (1998). Ductile design of steel structures. New York: McGraw-Hill.Google Scholar
  7. Clément, D., & Williams, M. (2004). Seismic design and analysis of a knee braced frame building. Journal of Earthquake Engineering, 8(4), 523–543.Google Scholar
  8. Collier, C., & Elnashai, A. (2001). Procedure for combining vertical and horizontal seismic action effects. Journal of Earthquake Engineering, 5(4), 521–539.CrossRefGoogle Scholar
  9. Conti, M., Mastrandrea, A., & Piluso, V. (2009). Plastic design and seismic response of knee braced frames. Advanced Steel Construction, 5(3), 343–366.Google Scholar
  10. CSI (Computers and Structures Inc.). (2011). Structural and earthquake engineering software, PERFORM-3D, nonlinear analysis and performance assessment for 3-D structures, Version 5.0.0, Berkeley.Google Scholar
  11. Di Sarno, L., & Elnashai, A. S. (2002). Seismic retrofitting of steel and composite building structures. IL: Mid-America Earthquake Center Report, CD Release 02-01, University of Illinois at Urbana-Champaign.Google Scholar
  12. Hsu, H.-L., & Li, Z.-C. (2015). Seismic performance of steel frames with controlled buckling mechanisms in knee braces. Journal of Constructional Steel Research, 107(4), 50–60.CrossRefGoogle Scholar
  13. Leelataviwat, S., Suksan, B., & Srechai, J. (2011). Seismic design and behavior of ductile knee-braced moment frames. Journal of Structural Engineering, 137(5), 579–588.CrossRefGoogle Scholar
  14. Lehman, D. E., Roeder, C. W., Herman, D., Johnson, S., & Kotulka, B. (2008). Improved seismic performance of gusset plate connections. Journal of Structural Engineering, ASCE, 134(6), 890–901.CrossRefGoogle Scholar
  15. Maheri, M. R., & Akbari, R. (2003). Seismic behaviour factor. R, for steel X-braced and knee-braced RC buildings, Engineering Structures, 25(13), 1697–1705.Google Scholar
  16. Maheri, M. R., Kousari, R., & Razazan, M. (2003). Pushover tests on steel X-braced and knee-braced RC frames. Engineering Structures, 25(13), 1697–1705.CrossRefGoogle Scholar
  17. Mofid, M., & Lotfollahi, M. (2006). On the characteristics of new ductile knee bracing systems. Journal of Constructional Steel Research, 62(3), 271–281.CrossRefGoogle Scholar
  18. Papazoglou, A. J., & Elnashai, A. (1996). Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering and Structural Dynamics, 25(10), 1109–1137.CrossRefGoogle Scholar
  19. Roeder, C. W., & Popov, E. P. (1978). Eccentrically braced steel frames for earthquakes. Journal of Structural Division, ASCE, 104(3), 391–412.Google Scholar
  20. Sam, M. T., Balendra, T., & Liaw, C. Y. (1995). Earthquake resistant steel frames with energy dissipating knee. Engineering Structures, 17(5), 334–343.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering, Roudehen BranchIslamic Azad UniversityRoudehenIran
  2. 2.Department of Civil EngineeringSouth Tehran Branch, Islamic Azad UniversityTehranIran

Personalised recommendations