Skip to main content

Optimization model for construction project resource leveling using a novel modified symbiotic organisms search

Abstract

In the construction industry, determining project schedules has become one of the most critical subjects among project managers. These schedules oftentimes result in significant resource fluctuations that are costly and impractical for the construction company. Thus, construction managers are required to adjust the resource profile through a resource leveling process. In this paper, a novel optimization model is presented for resource leveling, called the “modified symbiotic organisms search” (MSOS). MSOS is developed based on the standard symbiotic organisms search, but with an improvement in the parasitism phase to better tackle complex optimization problems. A case study is employed to investigate the performance of the proposed optimization model in coping with the resource leveling problem. The experimental results show that the proposed model can find a better quality solution in comparison with existing optimization models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arditi, D., & Pattanakitchamroon, T. (2006). Selecting a delay analysis method in resolving construction claims. International Journal of Project Management, 24(2), 145–155. https://doi.org/10.1016/j.ijproman.2005.08.005.

    Article  Google Scholar 

  2. Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects. International Journal of Project Management, 24(4), 349–357. https://doi.org/10.1016/j.ijproman.2005.11.010.

    Article  Google Scholar 

  3. Cheng, M.-Y., Chiu, C.-K., Chiu, Y.-F., Wu, Y.-W., Syu, Z.-L., Prayogo, D., et al. (2014). SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 26(4), 293–308.

    Google Scholar 

  4. Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98–112. https://doi.org/10.1016/j.compstruc.2014.03.007.

    Article  Google Scholar 

  5. Cheng, M.-Y., & Prayogo, D. (2017). A novel fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving structural optimization problems. Engineering with Computers, 33(1), 55–69. https://doi.org/10.1007/s00366-016-0456-z.

    Article  Google Scholar 

  6. Cheng, M.-Y., Prayogo, D., & Tran, D.-H. (2016a). Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search. Journal of Computing in Civil Engineering, 30(3), 04015036. https://doi.org/10.1061/(asce)cp.1943-5487.0000512.

    Article  Google Scholar 

  7. Cheng, M.-Y., Prayogo, D., Wu, Y.-W., & Lukito, M. M. (2016b). A hybrid harmony search algorithm for discrete sizing optimization of truss structure. Automation in Construction, 69, 21–33. https://doi.org/10.1016/j.autcon.2016.05.023.

    Article  Google Scholar 

  8. Cheng, M.-Y., Tran, D.-H., & Hoang, N.-D. (2017). Fuzzy clustering chaotic-based differential evolution for resource leveling in construction projects. Journal of Civil Engineering and Management, 23(1), 113–124. https://doi.org/10.3846/13923730.2014.982699.

    Article  Google Scholar 

  9. Cheng, M.-Y., Wibowo, D. K., Prayogo, D., & Roy, A. F. V. (2015). Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. Journal of Civil Engineering and Management, 21(7), 881–892. https://doi.org/10.3846/13923730.2014.893922.

    Article  Google Scholar 

  10. Christodoulou, S., Ellinas, G., & Michaelidou-Kamenou, A. (2009). Minimum moment method for resource leveling using entropy maximization. Journal of Construction Engineering and Management, 136(5), 518–527. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000149.

    Article  Google Scholar 

  11. Das, S., Maity, S., Qu, B.-Y., & Suganthan, P. N. (2011). Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art. Swarm and Evolutionary Computation, 1(2), 71–88. https://doi.org/10.1016/j.swevo.2011.05.005.

    Article  Google Scholar 

  12. Easa, S. (1989). Resource leveling in construction by optimization. Journal of Construction Engineering and Management, 115(2), 302–316. https://doi.org/10.1061/(ASCE)0733-9364(1989)115:2(302).

    Article  Google Scholar 

  13. El-Rayes, K., & Jun, D. (2009). Optimizing resource leveling in construction projects. Journal of Construction Engineering and Management, 135(11), 1172–1180. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000097.

    Article  Google Scholar 

  14. Geng, J.-Q., Weng, L.-P., & Liu, S.-H. (2011). An improved ant colony optimization algorithm for nonlinear resource-leveling problems. Computers and Mathematics with Applications, 61(8), 2300–2305. https://doi.org/10.1016/j.camwa.2010.09.058.

    Article  MATH  Google Scholar 

  15. Georgy, M. E. (2008). Evolutionary resource scheduler for linear projects. Automation in Construction, 17(5), 573–583. https://doi.org/10.1016/j.autcon.2007.10.005.

    Article  Google Scholar 

  16. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley Longman Publishing Co., Inc.

    MATH  Google Scholar 

  17. Harris, R. (1990). Packing method for resource leveling (pack). Journal of Construction Engineering and Management, 116(2), 331–350. https://doi.org/10.1061/(ASCE)0733-9364(1990)116:2(331).

    Article  Google Scholar 

  18. Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of Construction Engineering and Management, 125(3), 167–175. https://doi.org/10.1061/(ASCE)0733-9364(1999)125:3(167).

    Article  Google Scholar 

  19. Jong, K. A. D. (1975). An analysis of the behavior of a class of genetic adaptive systems. Michigan: University of Michigan.

    Google Scholar 

  20. Karaa, F., & Nasr, A. (1986). Resource management in construction. Journal of Construction Engineering and Management, 112(3), 346–357. https://doi.org/10.1061/(ASCE)0733-9364(1986)112:3(346).

    Article  Google Scholar 

  21. Kaveh, A. (2017). Applications of metaheuristic optimization algorithms in civil engineering. Cham: Springer.

    Book  MATH  Google Scholar 

  22. Kaveh, A., & Ilchi Ghazaan, M. (2018). A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures. Engineering Optimization, 50(2), 235–252. https://doi.org/10.1080/0305215X.2017.1313250.

    MathSciNet  Article  MATH  Google Scholar 

  23. Kaveh, A., Khanzadi, M., & Alipour, M. (2016). Fuzzy resource constraint project scheduling problem using CBO and CSS algorithms. International Journal of Civil Engineering, 14(5), 325–337. https://doi.org/10.1007/s40999-016-0031-4.

    Article  Google Scholar 

  24. Kaveh, A., & Nasrollahi, A. (2013). Engineering design optimization using a hybrid PSO and HS algorithm. Asian Journal of Civil Engineering (Bhrc), 14(2), 201–223.

    Google Scholar 

  25. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Paper presented at the Proceedings of the IEEE international conference on neural networks, Perth, Australia.

  26. Khanzadi, M., Kaveh, A., Alipour, M., & Aghmiuni, K. H. (2016). Application of CBO and CSS for resource allocation and resource leveling problem. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40(1), 1–10. https://doi.org/10.1007/s40996-016-0004-5.

    Article  Google Scholar 

  27. Leu, S.-S., Yang, C.-H., & Huang, J.-C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27–41. https://doi.org/10.1016/S0926-5805(99)00011-4.

    Article  Google Scholar 

  28. Mahfoud, S. W. (1995). Niching methods for genetic algorithms. Ph.D. Dissertation, University of Illinois at Urbana-Champaign Champaign, IL, USA.

  29. Martinez, J., & Loannou, P. (1993) Resource leveling based on the modified minimum moment heuristic. Computing in Civil and Building Engineering, 287–294.

  30. Prayogo, D., Cheng, M.-Y., & Prayogo, H. (2017). A novel implementation of nature-inspired optimization for civil engineering: A comparative study of symbiotic organisms search. Civil Engineering Dimension, 19(1), 36–43.

    Google Scholar 

  31. Prayogo, D., Cheng, M.-Y., Wu, Y.-W., Herdany, A. A., & Prayogo, H. (2018). Differential Big Bang-Big Crunch algorithm for construction-engineering design optimization. Automation in Construction, 85, 290–304. https://doi.org/10.1016/j.autcon.2017.10.019.

    Article  Google Scholar 

  32. Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 13(2), 398–417.

    Article  Google Scholar 

  33. Sears, S. K., Sears, G. A., & Clough, R. H. (2008). Construction project management: A practical guide to field construction management (5th ed.). New Jersey: Wiley.

    Google Scholar 

  34. Son, J., & Skibniewski, M. J. (1999). Multiheuristic approach for resource leveling problem in construction engineering: Hybrid approach. Journal of Construction Engineering and Management, 125(1), 23–31. https://doi.org/10.1061/(ASCE)0733-9364(1999)125:1(23).

    Article  Google Scholar 

  35. Storn, R. M., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    MathSciNet  Article  MATH  Google Scholar 

  36. Tran, D.-H., Cheng, M.-Y., & Prayogo, D. (2016). A novel multiple objective symbiotic organisms search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94, 132–145. https://doi.org/10.1016/j.knosys.2015.11.016.

    Article  Google Scholar 

  37. Tran, H.-H., & Hoang, N.-D. (2014). A novel resource-leveling approach for construction project based on differential evolution. Journal of Construction Engineering, 2014, 7. https://doi.org/10.1155/2014/648938.

    Google Scholar 

  38. Wu, J. I. E., & An, Q. (2012). New approaches for resource allocation via DEA models. International Journal of Information Technology & Decision Making, 11(01), 103–117. https://doi.org/10.1142/S0219622012500058.

    Article  Google Scholar 

  39. Yu, V. F., Redi, A. A. N. P., Yang, C.-L., Ruskartina, E., & Santosa, B. (2017). Symbiotic organisms search and two solution representations for solving the capacitated vehicle routing problem. Applied Soft Computing, 52, 657–672. https://doi.org/10.1016/j.asoc.2016.10.006.

    Article  Google Scholar 

  40. Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074. https://doi.org/10.1016/j.ins.2008.02.014.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge that the present research is supported by The Ministry of Research, Technology and Higher Education of the Republic of Indonesia under the “Penelitian Dasar Unggulan Perguruan Tinggi 2018” (PDUPT) Research Grant Scheme (No: 002/SP2H/LT/K7/KM/2017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doddy Prayogo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prayogo, D., Cheng, MY., Wong, F.T. et al. Optimization model for construction project resource leveling using a novel modified symbiotic organisms search. Asian J Civ Eng 19, 625–638 (2018). https://doi.org/10.1007/s42107-018-0048-x

Download citation

Keywords

  • Construction management
  • Resource leveling
  • Optimization
  • Metaheuristic
  • Symbiotic organisms search