Advertisement

Asian Journal of Civil Engineering

, Volume 19, Issue 5, pp 595–606 | Cite as

Sensitivity and fragility analysis of steel moment frames subjected to progressive collapse

  • Arash Naji
Original Paper
  • 16 Downloads

Abstract

Progressive collapse refers to a phenomenon in which a local damage in a primary structural element due to abnormal loads, leads to a partial or complete structural failure. Although most studies in progressive collapse are based on deterministic analysis using median or nominal values of analysis parameters, uncertainty analysis also results in more realistic results. An application of probability theory to the structures’ failure analysis with uncertain properties is one of the ways to deal with, in which they are considered as random variables. For probabilistic analysis, first sensitivity analysis should be carried out to study the sensitivity of response to different parameters. In this paper, sensitivity analysis is performed to study the effect of uncertainty of dead and live loads, and properties of steel such as modulus of elasticity and yield stress of steel on the response of column removed point. Then, fragility curves are also plotted to investigate the probability of progressive collapse of steel moment frames.

Keywords

Progressive collapse Steel structures Probabilistic analysis Fragility curves Sensitivity analysis Monte Carlo simulation First-order second-moment Tornado diagram 

References

  1. Asprone, D., Jalayer, F., Prota, A., & Manfredi, G. (2010). Proposal of a probabilistic model for multi-hazard risk assessment of structures in seismic zones subjected to blast for the limit state of collapse. Structural Safety, 32, 25–34.  https://doi.org/10.1016/j.strusafe.2009.04.002.CrossRefGoogle Scholar
  2. Bucher, C. G. (1988). Adaptive sampling—an iterative fast monte- carlo procedure. Structural Safety, 5, 119–126.  https://doi.org/10.1016/0167-4730(88)90020-3.CrossRefGoogle Scholar
  3. Department of Defense (DOD). (2013). Unified facilities criteria (UFC): design of buildings to resist progressive collapse. Washington (DC).Google Scholar
  4. Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities., 20(4), 315–323.  https://doi.org/10.1061/(asce)0887-3828(2006)20:4(315).CrossRefGoogle Scholar
  5. General Service Administration (GSA). (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC).Google Scholar
  6. Harris, M. E., Corotis, R. B., Bova, C. J. (1981). Area-dependent processes for structural live loads. Journal of Structural Division, 107(ST5).Google Scholar
  7. Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss-Part I: simplified assessment framework. Eng. Struc. 30, pp. 1308–1318,  https://doi.org/10.1016/j.engstruct.2007.07.011.
  8. Kim, J. R., Kim, S. B., Park, Y. H., & Chung, W. G. (2000). Statistical investigation on material properties of steel. Conf Arch Inst Korea, 20(1), 229–232.Google Scholar
  9. Kim, J., Lee, Y., & Choi, H. (2011a). Progressive collapse resisting capacity of braced frames. The Structural Design of Tall and Special Buildings, 20, 257–270.CrossRefGoogle Scholar
  10. Kim, J., Park, J. H., & Lee, T. H. (2011b). Sensitivity analysis of steel buildings subjected to column loss. Engineering Structures, 33(2), 421–432.  https://doi.org/10.1016/j.engstruct.2010.10.025.CrossRefGoogle Scholar
  11. Krawinkler, H., Gupta, A., Luco, N., and Medina, R. (1999). SAC Testing Programs and Loading Histories, part of FEMA SAC Phase II project. NISEE—University of California at Berkeley.Google Scholar
  12. Le, J. L., Xue, B. (2013). Probabilistic analysis of vulnerability of reinforced concrete buildings against progressive collapse, Structures Congress, ASCE.Google Scholar
  13. Lee, C., Kim, S., Han, K., & Lee, K. (2009). Simplified nonlinear progressive collapse analysis of welded steel moment frames. Journal of Constructional Steel Research, 65, 1130–1137.  https://doi.org/10.1016/j.jcsr.2008.10.008.CrossRefGoogle Scholar
  14. Lee, T. H., Mosalam, K. M. (2006). Probabilistic seismic evaluation of reinforced concrete structural components and systems. PEER Technical Report 2006/04. Berkeley: University of California.Google Scholar
  15. Li, Q., & Ellingwood, B. R. (2007). Damage inspection and vulnerability analysis of existing buildings with steel moment-resisting frames. Engineering Structures.  https://doi.org/10.1016/j.engstruct.2007.03.018.Google Scholar
  16. Melchers, R. E. (1999). Structural reliability analysis and prediction. Chichester: Wiley.Google Scholar
  17. Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44, 335–341.  https://doi.org/10.1080/01621459.1949.10483310.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Naji, A. (2016). Modeling catenary effect in progressive collapse analysis of concrete structures. Structural Concrete, 17(2), 145–151.  https://doi.org/10.1002/suco.201500065.CrossRefGoogle Scholar
  19. Naji, A., & Irani, F. (2012). Progressive collapse analysis of steel frames: simplified procedure and explicit expression for dynamic increase factor. International Journal of Steel Structures, 12(40), 537–549.  https://doi.org/10.1007/s13296-012-4008-0.CrossRefGoogle Scholar
  20. Nowak, A. S., Collins, K. R. (2000). Reliability of structures, McGraw-Hill.Google Scholar
  21. Porter, K. A., Beck, J. L., & Shaikhutdinov, R. V. (2002). Sensitivity of building loss estimates to major uncertain variables. Earthquake Spectra, 18(4), 719–743.  https://doi.org/10.1193/1.1516201.CrossRefGoogle Scholar
  22. Ruth, P., Marchand, K. A., & Williamson, E. B. (2006). Static equivalency in progressive collapse alternate path analysis: reducing conservatism while retaining structural integrity. Journal of Performance of Constructed Facilities, 20(4), 349–364.  https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349).CrossRefGoogle Scholar
  23. Schudler, G. I. (1997). Structural reliability—recent advances, 7th International Conferences on Structural Safety and Reliability, Kyoto, Japan.Google Scholar
  24. Tsai, M., & Lin, B. (2008). Investigation of progressive collapse resistance and inelastic response for an earthquake-resistant RC building subjected to column failure. Engineering Structures.  https://doi.org/10.1016/j.engstruct.2008.05.031.Google Scholar
  25. Uniform Building Code, UBC. (1997). In International Conference of Building Officials, Whittier, CA.Google Scholar
  26. Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31(3), 491–514.  https://doi.org/10.1002/eqe.14.CrossRefGoogle Scholar
  27. Vlassis, A. G., Izzuddin, B. A., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey byildings due to sudden column loss-Part II: application. Engineering Structures, 30, 1424–1438.  https://doi.org/10.1016/j.engstruct.2007.08.011.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringSadjad University of TechnologyMashhadIran

Personalised recommendations