Skip to main content

Analysis for Improved Sowing Date for Winter Faba Bean in Morocco

Abstract

Faba bean (Vicia faba L.) is a useful grain legume for production in Mediterranean climates due to its consumption as food for humans and feed for animals, and its ability to symbiotically fix atmospheric nitrogen. Currently, in Morocco a substantial fraction of faba bean is sown under a rainfed management scheme in which the crop is sown after about a 15-day delay following the first rains after the dry season. The 15-day delay allows weed seeds to germinate and be killed during land tillage prior to sowing of faba bean. However, the 15-day delay shortens the growing season and may negatively impact seed yield. Two alternate sowing date criteria were simulated for faba bean sowing date in Morocco as approaches to increase production. In addition to the 15-day delay management by farmers, sowing was simulated to occur immediately following accumulation of 10 mm or 25 mm of water in the soil. A geospatial analysis was undertaken using the SSM-faba bean model to simulate production on a 1° × 1° grid across Morocco. Eighty three locations were each simulated for 30 growing seasons of weather input. The simulation results for the 25-mm sowing date criteria resulted in decreased geographical area in which faba bean could be grown while the 10-mm sowing date criteria resulted in an expanded geographical area for faba bean production. The average yield based only on seasons in which sowing was achieved, was fairly stable among the sowing-date criteria. The probability of yield increase of the 10-mm sowing date criterion as compared to the 15-day delay sowing was greater than 50% in much of the area found suitable for faba bean production. Assuming an acceptable method for weed control for the 10-mm sowing date criterion, this alternate management could expand faba bean production in Morocco as compared to the current practice of a 15-delay in sowing date.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alaoui, S.B. (2005). Référentiel Pour La Conduite Technique de la Fève (Vicia Faba). https://www.researchgate.net/project/Referentiels-pour-la-Conduite-Technique-des-Principales-Cultures. Accessed 5 Oct 2020.

  • Amir, J., & Sinclair, T. R. (1991). A model of water limitation on spring wheat growth and yield. Field Crops Research, 28(1), 59–69. https://doi.org/10.1016/0378-4290(91)90074-6

    Article  Google Scholar 

  • Annicchiarico, P., & Iannucci, A. (2008). Breeding strategy for faba bean in southern europe based on cultivar responses across climatically contrasting environments. Crop Science, 48(3), 983–991. https://doi.org/10.2135/cropsci2007.09.0501

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., et al. (2011). The ERA-interim reanalsyis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.

    Article  Google Scholar 

  • Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA FAO.

    Google Scholar 

  • French, R. J. (2010). The Risk of vegetative water deficit in early-sown faba bean (Vicia faba L.) and its implications for crop productivity in a Mediterranean-type environment. Crop & Pasture Science, 61(7), 566–77. https://doi.org/10.1071/CP09372

    Article  Google Scholar 

  • Ghanem, M. E., Marrou, H., Biradar, C., & Sinclair, T. R. (2015). Production potential of lentil (Lens culinaris medik) in east Africa. Agricultural Systems, 137(2), 24–38.

    Article  Google Scholar 

  • Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8), L08707. https://doi.org/10.1029/2006GL025734

    Article  Google Scholar 

  • Hammer, G. L., & Muchow, R. C. (1994). Assessing climatic risk to sorghum production in water-limited subtropical environments I. development and testing of a simulation model. Field Crops Research, 36(3), 221–34. https://doi.org/10.1016/0378-4290(94)90114-7

    Article  Google Scholar 

  • Hammer, G. L., Sinclair, T. R., Boote, K. J., Wright, G. C., Meinke, H., & Bell, M. J. (1995). A Peanut simulation model: I. model development and testing. Agronomy Journal, 87(6), 1085–93. https://doi.org/10.2134/agronj1995.00021962008700060009x

    Article  Google Scholar 

  • Husain, M. M., Reid, J. B., Othman, H., & Gallagher, J. N. (1990). Growth and water use of faba beans (Vicia faba) in a sub-humid climate i. root and shoot adaptations to drought stress. Field Crops Research, 23(1), 1–17. https://doi.org/10.1016/0378-4290(90)90093-Q

    Article  Google Scholar 

  • Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., Imamura, D. T., Bowen, W. T., & Singh, U. (1998). Decision Support System for Agrotechnology Transfer: DSSAT V3. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production, systems approaches for sustainable agricultural development (pp. 157–177). Springer.

    Chapter  Google Scholar 

  • Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., … Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3), 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9

    Article  Google Scholar 

  • Lavania, D., Siddiqui, M. H., Al-Whaibi, M. H., Singh, A. K., Kumar, R., & Grover, A. (2015). Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiologia Plantarum, 37, 1737.

    Article  Google Scholar 

  • Leport, L., Turner, N. C., French, R. J., Tennant, D., Thomson, B. D., & Siddique, K. H. M. (1998). Water relations, gas exchange and growth of cool-season grain legumes in a Mediterranean-type environment. European Journal of Agronomy, 9(4), 295–303. https://doi.org/10.1016/S1161-0301(98)00042-2

    Article  Google Scholar 

  • Loss, S. P., Siddique, K. H. M., & Martin, L. D. (1997). Adaptation of faba bean (Vicia faba L.) to dryland mediterranean-type environments ii. Phenology, canopy development, radiation absorbtion and biomass partitioning. Field Crops Research, 52(1), 29–41. https://doi.org/10.1016/S0378-4290(96)03454-5

    Article  Google Scholar 

  • Marrou, H., Ghanem, M. E., Amri, M., Maalouf, F., Ben Sadoun, S., Kibbou, F., & Sinclair, T. R. (2021). Restrictive irrigation improves yield and reduces risk for faba bean across the Middle East and North Africa: A modeling study. Agricultural Systems, 189, 103068.

    Article  Google Scholar 

  • Muchow, R. C., & Sinclair, T. R. (1991). Water deficit effects on maize yields modeled under current and ‘greenhouse’ climates. Agronomy Journal, 83(6), 1052–1059. https://doi.org/10.2134/agronj1991.00021962008300060023x

    Article  Google Scholar 

  • Mwanamwenge, J., Loss, S. P., Siddique, K. H. M., & Cocks, P. S. (1998). Growth, seed yield and water use of faba bean (Vicia faba L.) in a short-season Mediterranean-type environment. Australian Journal of Experimental Agriculture, 38(2), 171. https://doi.org/10.1071/EA97098

    Article  Google Scholar 

  • Mwanamwenge, J., Loss, S. P., Siddique, K. H. M., & Cocks, P. S. (1999). Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia Faba L.). European Journal of Agronomy, 11(1), 1–11. https://doi.org/10.1016/S1161-0301(99)00003-9

    Article  Google Scholar 

  • Nouaceur, Z., & Murărescu, O. (2016). Rainfall variability and trend analysis of annual rainfall in North Africa. International Journal of Atmospheric Sciences, 2016, 1–12. https://doi.org/10.1155/2016/7230450

    Article  Google Scholar 

  • Oufdou, K., Benidire, L., Lyubenova, L., Daoui, K., El Abidine Fatemi, Z., & Schröder, P. (2014). Enzymes of the glutathione–ascorbate cycle in leaves and roots of rhizobia-inoculated faba bean plants (Vicia Faba L.) under salinity stress. European Journal of Soil Biology, 60, 98–103. https://doi.org/10.1016/j.ejsobi.2013.11.002

    Article  CAS  Google Scholar 

  • Ritchie, J. T. (1991). Water dynamics in the soil-plant-atmosphere system. Plant and Soil, 58, 81–96.

    Article  Google Scholar 

  • Ruiz-Ramos, M., & Mínguez, M. I. (2006). ALAMEDA, a Structural–functional model for faba bean crops: Morphological parameterization and verification. Annals of Botany, 97(3), 377–388. https://doi.org/10.1093/aob/mcj048

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebbar Al. 2013. Etude de la variabilité et de l’évolution de la pluviométrie au Maroc (1935–2005): réactualisation de la carte des précipitations. https://doi.org/10.13140/2.1.1206.6084.

  • Sinclair, T. R. (1986). Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Research, 15, 125–141.

    Article  Google Scholar 

  • Sinclair, T. R., Marrou, H., Soltani, A., Vadez, V., & Chandolu, K. C. (2014). Soybean production potential in Africa. Global Food Security, 3(1), 31–40. https://doi.org/10.1016/j.gfs.2013.12.001

    Article  Google Scholar 

  • Sinclair, T. R., Muchow, R. C., Ludlow, M. M., Leach, G. J., Lawn, R. J., & Foale, M. A. (1987). Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram. Field Crops Research, 17(2), 121–140. https://doi.org/10.1016/0378-4290(87)90087-6

    Article  Google Scholar 

  • Soltani, A., Ghassemi-Golezani, K., Khooie, F. R., & Moghaddam, M. (1999). A simple model for chickpea growth and yield. Field Crops Research, 62(2), 213–224. https://doi.org/10.1016/S0378-4290(99)00017-9

    Article  Google Scholar 

  • Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. CABI.

    Book  Google Scholar 

  • Stützel, H. (1995). A simple model for simulation of growth and development in faba beans (Vicia Faba L.) 1. Model description. European Journal of Agronomy, 4(2), 175–85. https://doi.org/10.1016/S1161-0301(14)80044-0

    Article  Google Scholar 

  • Stützel, H. (1995). A Simple model for simulation of growth and development in faba beans (Vicia faba L.) 2. Model evaluation and application for the assessment of sowing date effects. European Journal of Agronomy, 4(2), 187–95. https://doi.org/10.1016/S1161-0301(14)80045-2

    Article  Google Scholar 

  • Tanner, C. B., & Sinclair, T. R. (1983). Efficient water use in crop production. research or re-search. In: Taylor, H. M., Jordan, W.R., Sinclair T.R. (eds), Limitations to Efficient Water Use in Crop Production (p 1–27). Am Soc Agron, Madison

  • Turner, N. C., Wright, G. C., & Siddique, K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 71, 193–231.

    Article  Google Scholar 

  • Turpin, J. E., Robertson, M. J., Hillcoat, N. S., & Herridge, D. F. (2002). Fababean (Vicia faba) in Australia’s norther grains belt: Canopy development, biomass, and nitrogen accumulation and partitioning. Australian Journal of Agricultural Research, 53, 227–237.

    Article  Google Scholar 

  • Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., DaCosta Bechtold, V., et al. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012.

    Article  Google Scholar 

  • Wahbi, A., & Sinclair, T. R. (2005). Simulation analysis of relative yield advantage of barley and wheat in an eastern mediterranean climate. Field Crops Research, 91(2), 287–296. https://doi.org/10.1016/j.fcr.2004.07.020

    Article  Google Scholar 

  • Yigezu, Y.A., T. El-Shater, M. Boughlala, Z. Bishaq, A. Niane, & A. Aw-Hassan. (2018). Is there an economic case for legume-cereal rotation? A case of faba-beans in the Moroccan wheat-based production systems. In: 30th International Conference of Agricultural Economists, pp 1561.

Download references

Funding

There is no source of funding supporting this research to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Sinclair.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibbou, F., Bouhmadi, K.E., Ghanem, M.E. et al. Analysis for Improved Sowing Date for Winter Faba Bean in Morocco. Int. J. Plant Prod. 15, 513–522 (2021). https://doi.org/10.1007/s42106-021-00162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-021-00162-4

Keywords