Abstract
Faba bean (Vicia faba L.) is a useful grain legume for production in Mediterranean climates due to its consumption as food for humans and feed for animals, and its ability to symbiotically fix atmospheric nitrogen. Currently, in Morocco a substantial fraction of faba bean is sown under a rainfed management scheme in which the crop is sown after about a 15-day delay following the first rains after the dry season. The 15-day delay allows weed seeds to germinate and be killed during land tillage prior to sowing of faba bean. However, the 15-day delay shortens the growing season and may negatively impact seed yield. Two alternate sowing date criteria were simulated for faba bean sowing date in Morocco as approaches to increase production. In addition to the 15-day delay management by farmers, sowing was simulated to occur immediately following accumulation of 10 mm or 25 mm of water in the soil. A geospatial analysis was undertaken using the SSM-faba bean model to simulate production on a 1° × 1° grid across Morocco. Eighty three locations were each simulated for 30 growing seasons of weather input. The simulation results for the 25-mm sowing date criteria resulted in decreased geographical area in which faba bean could be grown while the 10-mm sowing date criteria resulted in an expanded geographical area for faba bean production. The average yield based only on seasons in which sowing was achieved, was fairly stable among the sowing-date criteria. The probability of yield increase of the 10-mm sowing date criterion as compared to the 15-day delay sowing was greater than 50% in much of the area found suitable for faba bean production. Assuming an acceptable method for weed control for the 10-mm sowing date criterion, this alternate management could expand faba bean production in Morocco as compared to the current practice of a 15-delay in sowing date.
This is a preview of subscription content, access via your institution.






References
Alaoui, S.B. (2005). Référentiel Pour La Conduite Technique de la Fève (Vicia Faba). https://www.researchgate.net/project/Referentiels-pour-la-Conduite-Technique-des-Principales-Cultures. Accessed 5 Oct 2020.
Amir, J., & Sinclair, T. R. (1991). A model of water limitation on spring wheat growth and yield. Field Crops Research, 28(1), 59–69. https://doi.org/10.1016/0378-4290(91)90074-6
Annicchiarico, P., & Iannucci, A. (2008). Breeding strategy for faba bean in southern europe based on cultivar responses across climatically contrasting environments. Crop Science, 48(3), 983–991. https://doi.org/10.2135/cropsci2007.09.0501
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., et al. (2011). The ERA-interim reanalsyis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.
Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA FAO.
French, R. J. (2010). The Risk of vegetative water deficit in early-sown faba bean (Vicia faba L.) and its implications for crop productivity in a Mediterranean-type environment. Crop & Pasture Science, 61(7), 566–77. https://doi.org/10.1071/CP09372
Ghanem, M. E., Marrou, H., Biradar, C., & Sinclair, T. R. (2015). Production potential of lentil (Lens culinaris medik) in east Africa. Agricultural Systems, 137(2), 24–38.
Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8), L08707. https://doi.org/10.1029/2006GL025734
Hammer, G. L., & Muchow, R. C. (1994). Assessing climatic risk to sorghum production in water-limited subtropical environments I. development and testing of a simulation model. Field Crops Research, 36(3), 221–34. https://doi.org/10.1016/0378-4290(94)90114-7
Hammer, G. L., Sinclair, T. R., Boote, K. J., Wright, G. C., Meinke, H., & Bell, M. J. (1995). A Peanut simulation model: I. model development and testing. Agronomy Journal, 87(6), 1085–93. https://doi.org/10.2134/agronj1995.00021962008700060009x
Husain, M. M., Reid, J. B., Othman, H., & Gallagher, J. N. (1990). Growth and water use of faba beans (Vicia faba) in a sub-humid climate i. root and shoot adaptations to drought stress. Field Crops Research, 23(1), 1–17. https://doi.org/10.1016/0378-4290(90)90093-Q
Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., Imamura, D. T., Bowen, W. T., & Singh, U. (1998). Decision Support System for Agrotechnology Transfer: DSSAT V3. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production, systems approaches for sustainable agricultural development (pp. 157–177). Springer.
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., … Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3), 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9
Lavania, D., Siddiqui, M. H., Al-Whaibi, M. H., Singh, A. K., Kumar, R., & Grover, A. (2015). Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiologia Plantarum, 37, 1737.
Leport, L., Turner, N. C., French, R. J., Tennant, D., Thomson, B. D., & Siddique, K. H. M. (1998). Water relations, gas exchange and growth of cool-season grain legumes in a Mediterranean-type environment. European Journal of Agronomy, 9(4), 295–303. https://doi.org/10.1016/S1161-0301(98)00042-2
Loss, S. P., Siddique, K. H. M., & Martin, L. D. (1997). Adaptation of faba bean (Vicia faba L.) to dryland mediterranean-type environments ii. Phenology, canopy development, radiation absorbtion and biomass partitioning. Field Crops Research, 52(1), 29–41. https://doi.org/10.1016/S0378-4290(96)03454-5
Marrou, H., Ghanem, M. E., Amri, M., Maalouf, F., Ben Sadoun, S., Kibbou, F., & Sinclair, T. R. (2021). Restrictive irrigation improves yield and reduces risk for faba bean across the Middle East and North Africa: A modeling study. Agricultural Systems, 189, 103068.
Muchow, R. C., & Sinclair, T. R. (1991). Water deficit effects on maize yields modeled under current and ‘greenhouse’ climates. Agronomy Journal, 83(6), 1052–1059. https://doi.org/10.2134/agronj1991.00021962008300060023x
Mwanamwenge, J., Loss, S. P., Siddique, K. H. M., & Cocks, P. S. (1998). Growth, seed yield and water use of faba bean (Vicia faba L.) in a short-season Mediterranean-type environment. Australian Journal of Experimental Agriculture, 38(2), 171. https://doi.org/10.1071/EA97098
Mwanamwenge, J., Loss, S. P., Siddique, K. H. M., & Cocks, P. S. (1999). Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia Faba L.). European Journal of Agronomy, 11(1), 1–11. https://doi.org/10.1016/S1161-0301(99)00003-9
Nouaceur, Z., & Murărescu, O. (2016). Rainfall variability and trend analysis of annual rainfall in North Africa. International Journal of Atmospheric Sciences, 2016, 1–12. https://doi.org/10.1155/2016/7230450
Oufdou, K., Benidire, L., Lyubenova, L., Daoui, K., El Abidine Fatemi, Z., & Schröder, P. (2014). Enzymes of the glutathione–ascorbate cycle in leaves and roots of rhizobia-inoculated faba bean plants (Vicia Faba L.) under salinity stress. European Journal of Soil Biology, 60, 98–103. https://doi.org/10.1016/j.ejsobi.2013.11.002
Ritchie, J. T. (1991). Water dynamics in the soil-plant-atmosphere system. Plant and Soil, 58, 81–96.
Ruiz-Ramos, M., & Mínguez, M. I. (2006). ALAMEDA, a Structural–functional model for faba bean crops: Morphological parameterization and verification. Annals of Botany, 97(3), 377–388. https://doi.org/10.1093/aob/mcj048
Sebbar Al. 2013. Etude de la variabilité et de l’évolution de la pluviométrie au Maroc (1935–2005): réactualisation de la carte des précipitations. https://doi.org/10.13140/2.1.1206.6084.
Sinclair, T. R. (1986). Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Research, 15, 125–141.
Sinclair, T. R., Marrou, H., Soltani, A., Vadez, V., & Chandolu, K. C. (2014). Soybean production potential in Africa. Global Food Security, 3(1), 31–40. https://doi.org/10.1016/j.gfs.2013.12.001
Sinclair, T. R., Muchow, R. C., Ludlow, M. M., Leach, G. J., Lawn, R. J., & Foale, M. A. (1987). Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram. Field Crops Research, 17(2), 121–140. https://doi.org/10.1016/0378-4290(87)90087-6
Soltani, A., Ghassemi-Golezani, K., Khooie, F. R., & Moghaddam, M. (1999). A simple model for chickpea growth and yield. Field Crops Research, 62(2), 213–224. https://doi.org/10.1016/S0378-4290(99)00017-9
Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. CABI.
Stützel, H. (1995). A simple model for simulation of growth and development in faba beans (Vicia Faba L.) 1. Model description. European Journal of Agronomy, 4(2), 175–85. https://doi.org/10.1016/S1161-0301(14)80044-0
Stützel, H. (1995). A Simple model for simulation of growth and development in faba beans (Vicia faba L.) 2. Model evaluation and application for the assessment of sowing date effects. European Journal of Agronomy, 4(2), 187–95. https://doi.org/10.1016/S1161-0301(14)80045-2
Tanner, C. B., & Sinclair, T. R. (1983). Efficient water use in crop production. research or re-search. In: Taylor, H. M., Jordan, W.R., Sinclair T.R. (eds), Limitations to Efficient Water Use in Crop Production (p 1–27). Am Soc Agron, Madison
Turner, N. C., Wright, G. C., & Siddique, K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 71, 193–231.
Turpin, J. E., Robertson, M. J., Hillcoat, N. S., & Herridge, D. F. (2002). Fababean (Vicia faba) in Australia’s norther grains belt: Canopy development, biomass, and nitrogen accumulation and partitioning. Australian Journal of Agricultural Research, 53, 227–237.
Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., DaCosta Bechtold, V., et al. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012.
Wahbi, A., & Sinclair, T. R. (2005). Simulation analysis of relative yield advantage of barley and wheat in an eastern mediterranean climate. Field Crops Research, 91(2), 287–296. https://doi.org/10.1016/j.fcr.2004.07.020
Yigezu, Y.A., T. El-Shater, M. Boughlala, Z. Bishaq, A. Niane, & A. Aw-Hassan. (2018). Is there an economic case for legume-cereal rotation? A case of faba-beans in the Moroccan wheat-based production systems. In: 30th International Conference of Agricultural Economists, pp 1561.
Funding
There is no source of funding supporting this research to report.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare there are no conflicts of interest.
Rights and permissions
About this article
Cite this article
Kibbou, F., Bouhmadi, K.E., Ghanem, M.E. et al. Analysis for Improved Sowing Date for Winter Faba Bean in Morocco. Int. J. Plant Prod. 15, 513–522 (2021). https://doi.org/10.1007/s42106-021-00162-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42106-021-00162-4