Skip to main content

Breeding Effects on Grain Filling Traits in Moroccan Durum Wheats Grown Under Contrasting Environments

Abstract

Yield crops is a complex component depending on several grain filling traits. Knowledge of their relative contribution to grain yield determination under contrasting environments is essential to optimize grain yield and its stability. This study evaluates the changes resulting from durum wheat breeding in Morocco during the last three decades on grain filling rate (R) and duration (D), final grain weight (W), and days from sowing to anthesis (DSA). A set of six durum wheat varieties, released between 1984 and 2007, was grown in experiments conducted under contrasting environments during three growing seasons. The analysis of variance revealed that water regimes and growing seasons accounted for the largest percentages of variability for R, D, W, and DSA. D and DSA increased significantly over time under both water regimes. W exhibited an increasing trend under irrigated conditions, but a significant decline under rainfed ones. In contrast, the change of R was only significant under irrigated conditions. The path coefficient revealed that irrigated and rainfed conditions impacted differently the direct and indirect effects among traits with higher values of direct effects recorded under water-limited conditions. Within irrigated trials, R and D affected directly and positively grain yield. Regarding rainfed conditions, grain yield was only dependent on W. These findings indicate that genetic progress in grain filling traits and their direct and indirect effects on grain yield differed significantly between rainfed and irrigated conditions. Therefore, when selecting for high-yielding durum wheat genotypes, a particular attention should be paid to the environmental conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aisawi, K. A. B., Reynolds, M. P., Singh, R. P., & Foulkes, M. J. (2015). The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 55(4), 1749–1764. https://doi.org/10.2135/cropsci2014.09.0601

    Article  Google Scholar 

  2. Alemu, Y. A., Anley, A. M., & Abebe, T. D. (2020). Genetic variability and association of traits in Ethiopian durum wheat (Triticum turgidium L. var. durum) landraces at Dabat Research Station, North Gondar. Cogent Food & Agriculture, 6(1), 1778604. https://doi.org/10.1080/23311932.2020.1778604

    CAS  Article  Google Scholar 

  3. Álvaro, F., Isidro, J., Villegas, D., García del Moral, L. F., & Royo, C. (2008). Breeding effects on grain filling, biomass partitioning, and remobilization in Mediterranean durum wheat. Agronomy Journal, 100(2), 361–370. https://doi.org/10.1371/journal.pone.0209597

    Article  Google Scholar 

  4. Baillot, N., Girousse, C., Allard, V., Piquet-Pissaloux, A., & Le Gouis, J. (2018). Different grain-filling rates explain grain-weight differences along the wheat ear. PLoS ONE, 13(12), e0209597. https://doi.org/10.1371/journal.pone.0209597

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhushan, B., Bharti, S., Ojha, A., Pandey, M., Gourav, S. S., Tyagi, B. S., & Singh, G. (2013). Genetic variability, correlation coefficient and path analysis of some quantitative traits in bread wheat. Journal of Wheat Research, 5(1), 21–26.

    Google Scholar 

  6. Blum, A., Mayer, J., & Golan, G. (1988). The effect of grain number per ear (sink size) on source activity and its water-relations in wheat. Journal of Experimental Botany, 39(1), 106–114. https://doi.org/10.1093/jxb/39.1.106

    Article  Google Scholar 

  7. Borrás, L., Slafer, G. A., & Otegui, M. E. (2004). Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86(2–3), 131–146. https://doi.org/10.1016/j.fcr.2003.08.002

    Article  Google Scholar 

  8. Brdar, M. D., Kraljević-Balalić, M. M., & Kobiljski, B. D. (2008). The parameters of grain filling and yield components in common wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. var. durum). Central European Journal of Biology, 3(1), 75–82. https://doi.org/10.2478/s11535-007-0050-x

    Article  Google Scholar 

  9. Calderini, D. F., & Reynolds, M. P. (2000). Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum × T. tauschii). Functional Plant Biology, 27(3), 183–191. https://doi.org/10.1071/PP99066

    Article  Google Scholar 

  10. Chairi, F., Vergara-Diaz, O., Vatter, T., Aparicio, N., Nieto-Taladriz, M. T., Kefauver, S. C., Bort, J., Serret, M. D., & Araus, J. L. (2018). Post-green revolution genetic advance in durum wheat: the case of Spain. Field Crops Research, 228, 158–169. https://doi.org/10.1016/j.fcr.2018.09.003

    Article  Google Scholar 

  11. Darroch, B. A., & Baker, R. J. (1990). Grain filling in three spring wheat genotypes: statistical analysis. Crop Science, 30(3), 525–529. https://doi.org/10.2135/cropsci1990.0011183X003000030009x

    Article  Google Scholar 

  12. De Vita, P., Nicosia, O. L. D., Nigro, F., Platani, C., Riefolo, C., Di Fonzo, N., & Cattivelli, L. (2007). Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 26(1), 39–53. https://doi.org/10.1016/j.eja.2006.08.009

    Article  Google Scholar 

  13. Del Pozo, A., Matus, I., Ruf, K., Castillo, D., Méndez-Espinoza, A. M., & Serret, M. D. (2019). Genetic advance of durum wheat under high yielding conditions: the case of Chile. Agronomy, 9(8), 454. https://doi.org/10.3390/agronomy9080454

    CAS  Article  Google Scholar 

  14. Del Pozo, A., Matus, I., Serret, M. D., & Araus, J. L. (2014). Agronomic and physiological traits associated with breeding advances of wheat under high-productive Mediterranean conditions. The case of Chile. Environmental and Experimental Botany, 103, 180–189. https://doi.org/10.1016/j.envexpbot.2013.09.016

    Article  Google Scholar 

  15. Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), 331–349. https://doi.org/10.1080/07352689.2014.875291

    CAS  Article  Google Scholar 

  16. Gao, F., Ma, D., Yin, G., Rasheed, A., Dong, Y., Xiao, Y., Xia, X., Wu, X., & He, Z. (2017). Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern yellow and Huai Valley since 1950. Crop Science, 57(2), 760–773. https://doi.org/10.2135/cropsci2016.05.0362

    CAS  Article  Google Scholar 

  17. García del Moral, L. F., Rharrabti, Y., Elhani, S., Martos, V., & Royo, C. (2005). Yield formation in Mediterranean durum wheats under two contrasting water regimes based on path-coefficient analysis. Euphytica, 146(3), 203–212. https://doi.org/10.1007/s10681-005-9006-2

    Article  Google Scholar 

  18. García del Moral, L. F., Rharrabti, Y., Villegas, D., & Royo, C. (2003). Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: an ontogenic approach. Agronomy Journal, 95(2), 266–274. https://doi.org/10.2134/agronj2003.2660

    Article  Google Scholar 

  19. Gasura, E., Setimela, P., Edema, R., Gibson, P. T., Okori, P., & Tarekegne, A. (2013). Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize. Crop Science, 53(6), 2295–2303. https://doi.org/10.2135/cropsci2013.01.0032

    Article  Google Scholar 

  20. Gebeyehou, G., Knott, D. R., & Baker, R. J. (1982). Rate and duration of grain filling in durum wheat cultivars. Crop Science, 22(2), 337–340. https://doi.org/10.2135/cropsci1982.0011183X002200020033x

    Article  Google Scholar 

  21. Gerema, G., Lule, D., Lemessa, F., & Mekonnen, T. (2020). Morphological characterization and genetic analysis in bread wheat germplasm: a combined study of heritability, genetic variance, genetic divergence and association of characters. Agricultural Science & Technology, 12(4), 301–311. https://doi.org/10.15547/ast.2020.04.048

    Article  Google Scholar 

  22. Giunta, F., Motzo, R., & Deidda, M. (1993). Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crops Research, 33(4), 399–409. https://doi.org/10.1016/0378-4290(93)90161-F

    Article  Google Scholar 

  23. Giunta, F., Motzo, R., & Pruneddu, G. (2007). Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars. European Journal of Agronomy, 27(1), 12–24. https://doi.org/10.1016/j.eja.2007.01.009

    Article  Google Scholar 

  24. González-Ribot, G., Opazo, M., Silva, P., & Acevedo, E. (2017). Traits explaining durum wheat (Triticum turgidum L. spp. durum) yield in dry Chilean Mediterranean environments. Frontiers in Plant Science, 8, 1781. https://doi.org/10.3389/fpls.2017.01781

    Article  PubMed  PubMed Central  Google Scholar 

  25. Green, A. J., Berger, G., Griffey, C. A., Pitman, R., Thomason, W., Balota, M., & Ahmed, A. (2012). Genetic yield improvement in soft red winter wheat in the Eastern United States from 1919 to 2009. Crop Science, 52(5), 2097–2108. https://doi.org/10.2135/cropsci2012.01.0026

    Article  Google Scholar 

  26. Harkness, C., Semenov, M. A., Areal, F., Senapati, N., Trnka, M., Balek, J., & Bishop, J. (2020). Adverse weather conditions for UK wheat production under climate change. Agricultural and Forest Meteorology, 282–283, 107862. https://doi.org/10.1016/j.agrformet.2019.107862

    Article  PubMed  PubMed Central  Google Scholar 

  27. Houshmand, S., Arzani, A., & Mirmohammadi-Maibody, S. A. M. (2014). Effects of salinity and drought stress on grain quality of durum wheat. Communications in Soil Science and Plant Analysis, 45(3), 297–308. https://doi.org/10.1080/00103624.2013.861911

    CAS  Article  Google Scholar 

  28. Iqbal, M., Moakhar, N. P., Strenzke, K., Haile, T., Pozniak, C., Hucl, P., & Spaner, D. (2016). Genetic improvement in grain yield and other traits of wheat grown in western Canada. Crop Science, 56(2), 613–624. https://doi.org/10.2135/cropsci2015.06.0348

    CAS  Article  Google Scholar 

  29. Joudi, M., Ahmadi, A., Mohammadi, V., Abbasi, A., & Mohammadi, H. (2014). Genetic changes in agronomic and phenologic traits of Iranian wheat cultivars grown in different environmental conditions. Euphytica, 196(2), 237–249. https://doi.org/10.1007/s10681-013-1027-7

    Article  Google Scholar 

  30. Kandić, V., Dodig, D., Zorić, M., Nikolić, A., Momirović, G. Š, Kaitović, Ž, Aleksić, G., & Durić, N. (2018). Grain filling parameters of two- and six-rowed barley genotypes in terminal drought conditions. Italian Journal of Agrometeorology, 23(2), 5–14. https://doi.org/10.19199/2018.2.2038-5625.005

    Article  Google Scholar 

  31. Khan, M. A., Mohammad, F., Malik, T., Khan, A., & Abbas, S. J. (2013). Genetic divergence in f4:6 wheat lines for yield and its contributing traits. Journal of Plant Breeding and Genetics, 1(3), 169–175.

    Google Scholar 

  32. Khanal, D., Thapa, D. B., Dhakal, K. H., Pandey, M. P., & Kandel, B. P. (2020). Correlation and path coefficient analysis of elite spring wheat lines developed for high temperature tolerance. Environment & Ecosystem Science, 4(2), 56–59.

    Article  Google Scholar 

  33. Latiri, K., Lhomme, J. P., & Lawlor, D. W. (2013). Grain filling of durum wheat through assimilate remobilisation under semi-arid conditions. Experimental Agriculture, 49(2), 197–211. https://doi.org/10.1017/S0014479712001238

    Article  Google Scholar 

  34. Loss, S. P., & Siddique, K. H. M. (1994). Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Advances in Agronomy, 52, 229–276. https://doi.org/10.1016/S0065-2113(08)60625-2

    CAS  Article  Google Scholar 

  35. Masoni, A., Ercoli, L., Mariotti, M., & Pampana, S. (2008). Nitrogen and phosphorus accumulation and remobilization of durum wheat as affected by soil gravel content. Cereal Research Communications, 36(1), 157–166. https://doi.org/10.1556/crc.36.2008.1.16

    CAS  Article  Google Scholar 

  36. Merah, O., & Monneveux, P. (2015). Contribution of different organs to grain filling in durum wheat under mediterranean conditions I. Contribution of post-anthesis photosynthesis and remobilization. Journal of Agronomy and Crop Science, 201(5), 344–352. https://doi.org/10.1111/jac.12109

    CAS  Article  Google Scholar 

  37. Miralles, D. J., & Slafer, G. A. (1995). Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crops Research, 43(2–3), 55–66. https://doi.org/10.1016/0378-4290(95)00041-N

    Article  Google Scholar 

  38. Miralles, D. J., & Slafer, G. A. (2007). Sink limitations to yield in wheat: how could it be reduced? Journal of Agricultural Science, 145(2), 139–149.

    Article  Google Scholar 

  39. Mohamandi, R. (2018). A maximin-minimax approach for identifying drought tolerant genotypes based on yield potential and loss in durum wheat. Cereal Research Communications, 46(3), 545–557. https://doi.org/10.1556/0806.46.2018.030

    Article  Google Scholar 

  40. Mohammadi, R., & Amri, A. (2013). Genotype× environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica, 192(2), 227–249. https://doi.org/10.1007/s10681-012-0839-1

    CAS  Article  Google Scholar 

  41. Motzo, R., Giunta, F., & Deidda, M. (1996). Relationships between grain filling parameters, fertility, earliness and grain protein of durum wheat in a Mediterranean environment. Field Crops Research., 47, 129–142. https://doi.org/10.1016/0378-4290(96)00021-4

    Article  Google Scholar 

  42. Motzo, R., Giunta, F., & Pruneddu, G. (2010). The response of rate and duration of grain filling to long-term selection for yield in Italian durum wheats. Crop & Pasture Science, 61, 162–169. https://doi.org/10.1071/CP09191

    Article  Google Scholar 

  43. Mrabet, R., Moussadek, R., Fadlaoui, A., & Van Ranst, E. (2012). Conservation agriculture in dry areas of Morocco. Field Crops Research, 132, 84–94. https://doi.org/10.1016/j.fcr.2011.11.017

    Article  Google Scholar 

  44. Palta, J. A., Kobata, T., Turner, N. C., & Fillery, I. R. (1994). Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Science, 34(1), 118–124. https://doi.org/10.2135/cropsci1994.0011183X003400010021x

    Article  Google Scholar 

  45. Pampana, S., & Mariotti, M. (2021). Durum wheat yield and n uptake as affected by N source, timing, and rate in two Mediterranean environments. Agronomy, 11(7), 1299. https://doi.org/10.3390/agronomy11071299

    Article  Google Scholar 

  46. Pampana, S., Mariotti, M., Ercoli, L., & Masoni, A. (2007). Remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by genotype and environment. Italian Journal of Agronomy, 2(3), 303–314. https://doi.org/10.4081/ija.2007.303

    Article  Google Scholar 

  47. Pampana, S., Masoni, A., & Arduini, I. (2016). Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Research Communications, 44(4), 706–716. https://doi.org/10.1556/0806.44.2016.026

  48. Penrose, L. D. J., Walsh, K., & Clark, K. (1998). Characters contributing to high yield in Currawong, an Australian winter wheat. Australian Journal of Agricultural Research, 49(5), 853–866. https://doi.org/10.1071/A97127

    Article  Google Scholar 

  49. Reynolds, M., Foulkes, M. J., Slafer, G. A., Berry, P., Parry, M. A., Snape, J. W., & Angus, W. J. (2009). Raising yield potential in wheat. Journal of Experimental Botany, 60(7), 1899–1918. https://doi.org/10.1093/jxb/erp016

    CAS  Article  PubMed  Google Scholar 

  50. Rharrabti, Y., & Elhani, S. (2014). Using path analysis to evaluate breeding progress in grain yield and related characters of durum wheat in Morocco. International Journal of Innovation and Applied Studies., 9(3), 1224–1232.

    Google Scholar 

  51. Royo, C., Abaza, M., Blanco, R., & García del Moral, L. F. (2000). Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Functional Plant Biology, 27(11), 1051–1059. https://doi.org/10.1071/PP99113

    CAS  Article  Google Scholar 

  52. Royo, C., Alvaro, F., Martos, V., Ramdani, A., Isidro, J., Villegas, D., & García del Moral, L. F. (2007). Genetic changes in durum wheat yield components and associated traits in Italian and Spanish varieties during the 20th century. Euphytica, 155(1), 259–270. https://doi.org/10.1007/s10681-006-9327-9

    Article  Google Scholar 

  53. Royo, C., Martos, V., Ramdani, A., Villegas, D., Rharrabti, Y., & García del Moral, L. F. (2008). Changes in yield and carbon isotope discrimination of Italian and Spanish durum wheat during the 20th century. Agronomy Journal, 100(2), 352–360. https://doi.org/10.2134/agronj2007.0060

    CAS  Article  Google Scholar 

  54. Royo, C., Villegas, D., Rharrabti, Y., Blanco, R., Martos, V., & García del Moral, L. F. (2006). Grain growth and yield formation of durum wheat grown at contrasting latitudes and water regimes in a Mediterranean environment. Cereal Research Communications, 34(2–3), 1021–1028. https://doi.org/10.1556/crc.34.2006.2-3.233

    Article  Google Scholar 

  55. Sanchez-Garcia, M., Royo, C., Aparicio, N., Martin-Sanchez, J. A., & Alvaro, F. (2013). Genetic improvement of bread wheat yield and associated traits in Spain during the 20th century. The Journal of Agricultural Science, 151, 105–118. https://doi.org/10.1017/S0021859612000330

    CAS  Article  PubMed  Google Scholar 

  56. Sayre, K. D., Rajaram, S., & Fischer, R. A. (1997). Yield potential progress in short bread wheats in northwest Mexico. Crop Science, 37(1), 36–42. https://doi.org/10.2135/cropsci1997.0011183X003700010006x

    Article  Google Scholar 

  57. Shirdelmoghanloo, H., Cozzolino, D., Lohraseb, I., & Collins, N. C. (2016). Truncation of grain filling in wheat (Triticum aestivum) triggered by brief heat stress during early grain filling: association with senescence responses and reductions in stem reserves. Functional Plant Biology, 43(10), 919–930. https://doi.org/10.1071/FP15384

    Article  PubMed  Google Scholar 

  58. Tsimba, R., Edmeades, G. O., Millner, J. P., & Kemp, P. D. (2013). The effect of planting date on maize: Phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Research, 150, 145–155. https://doi.org/10.1016/j.fcr.2013.05.021

    Article  Google Scholar 

  59. Wang, Y., Xi, W., Wang, Z., Wang, B., Xu, X., Han, M., Zhou, S., & Zhang, Y. (2016). Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain. Journal of Integrative Agriculture, 15(10), 2247–2256. https://doi.org/10.1016/S2095-3119(16)61408-9

    Article  Google Scholar 

  60. Wardlaw, I. F., & Willenbrink, J. (2000). Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytologist, 148(3), 413–422. https://doi.org/10.1046/j.1469-8137.2000.00777.x

    CAS  Article  Google Scholar 

  61. Weir, A. H., Bragg, P. L., Porter, J. R., & Rayner, J. H. (1984). A winter-wheat crop simulation-model without water or nutrient limitations. The Journal of Agricultural Science, 102(2), 371–382. https://doi.org/10.1017/s0021859600042702

    Article  Google Scholar 

  62. Wu, X., Tang, Y., Li, C., & Wu, C. (2018). Characterization of the rate and duration of grain filling in wheat in southwestern China. Plant Production Science, 21(4), 358–369. https://doi.org/10.1080/1343943X.2018.1518722

    Article  Google Scholar 

  63. Xie, Q., Mayes, S., & Sparkes, D. L. (2015). Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany, 66(21), 6715–6730. https://doi.org/10.1093/jxb/erv378

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Yan, S., Wu, Y., Fan, J., Zhang, F., Qiang, S., Zheng, J., Xiang, Y., Guo, J., & Zou, H. (2019). Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agricultural Water Management, 213, 983–995. https://doi.org/10.1016/j.agwat.2018.12.019

    Article  Google Scholar 

  65. Yang, W., Peng, S., Dionisio-Sese, M. L., Laza, R. C., & Visperas, R. M. (2008). Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Research, 105(3), 221–227. https://doi.org/10.1016/j.fcr.2007.10.006

    Article  Google Scholar 

  66. Yao, Y., Lv, L., Zhang, L., Yao, H., Dong, Z., Zhang, J., Ji, J., Jia, X., & Wang, H. (2019). Genetic gains in grain yield and physiological traits of winter wheat in Hebei Province of China, from 1964 to 2007. Field Crops Research, 239, 114–123. https://doi.org/10.1016/j.fcr.2019.03.011

    Article  Google Scholar 

  67. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

    Article  Google Scholar 

  68. Zhou, Y., Zhu, H. Z., Cai, S. B., He, Z. H., Zhang, X. K., Xia, X. C., & Zhang, G. S. (2007). Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 157(3), 465–473. https://doi.org/10.1007/s10681-007-9376-8

    Article  Google Scholar 

Download references

Funding

Partial financial support was received from Sidi Mohamed Ben Abdellah University.

Author information

Affiliations

Authors

Contributions

All authors contributed to the material preparation, data collection, and analysis. The first draft of the manuscript was written by AB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdelali Boussakouran.

Ethics declarations

Conflict of interest

Authors did not have any conflict of interest.

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boussakouran, A., El Yamani, M., Sakar, E.H. et al. Breeding Effects on Grain Filling Traits in Moroccan Durum Wheats Grown Under Contrasting Environments. Int. J. Plant Prod. 15, 473–483 (2021). https://doi.org/10.1007/s42106-021-00154-4

Download citation

Keywords

  • Durum wheat
  • Breeding effects
  • Morocco
  • Grain filling
  • Path analysis