Skip to main content

Response of Rainfed Chickpea Yield to Spatio-Temporal Variability in Climate in the Northwest of Iran

Abstract

This study assessed the impact of spatio-temporal changes in weather variables (minimum and maximum temperatures, and precipitation), aridity index (AI), and four agro-climatic indices on grain yield of rainfed chickpea in the northwest of Iran between 1998 and 2017. The four agro-climatic indices were accumulative temperatures less than Tmin (TLB), number of days with temperatures less than Tmin (DLB), accumulative temperatures above the Tcritical (TAC), and number of days with temperatures above the Tcritical (DAC). Chickpea grain yield responded negatively to higher temperatures and decreased precipitation. Spatio-temporal variability of monthly weather variables (precipitation and temperature) particularly in May, June, and July played an important role in crop yield determination in the target area during the study period. It was shown that Maragheh and Mianeh, located in the lower half of the study area, have become more arid than other locations during the last 2 decades. Therefore, any small increase in AI in these two locations during June at flowering, could lead to a considerable increase in crop yield. Further, the spatio-temporal analysis showed that TLB and DLB decreased while TAC and DAC increased over the last 2 decades, which had detrimental effects on chickpea grain yield. The negative impacts of DAC and TAC, however, were much higher than those of TLB and DLB. Overall, the warmer seasons and warmer locations, particularly in the more arid area, had more destructive effects on chickpea yield than colder ones during the study period. The findings of this study can be used to enhance understanding of the climate-crop relationships and can help decision-makers to recognize the areas have hazardous climatic condition for chickpea and to forecast regional yield as well. Finally, this approach could be transferrable to other regions, particularly in the arid and semi-arid regions that are experiencing similar problems, to move towards sustainable development goals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of Data and Material

The data presented in this study are available on request from the corresponding author.

Code Availability

Not applicable.

References

  1. Araghi, A., Mousavi-Baygi, M., & Adamowski, J. (2015). Detection of trends in days with extreme temperatures in Iran from 1961 to 2010. Theoretical and Applied Climatology, 125, 213–225. https://doi.org/10.1007/s00704-015-1499-6

    Article  Google Scholar 

  2. Asseng, S., Foster, I. A., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997–1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x

    Article  Google Scholar 

  3. Bannayan, M., Lotfabadi, S. S., Sanjani, S., Mohamadian, A., & Aghaalikhani, M. (2011). Effects of precipitation and temperature on crop production variability in northeast Iran. International Journal of Biometeorology, 55(3), 387–401. https://doi.org/10.1007/s00484-010-0348-7

    Article  PubMed  Google Scholar 

  4. Bannayan, M., Sanjani, S., Alizadeh, A., Lotfabadi, S. S., & Mohamadian, A. (2010). Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118(2), 105–114. https://doi.org/10.1016/j.fcr.2010.04.011

    Article  Google Scholar 

  5. Barlow, K. M., Christy, B. P., Oleary, G. J., Riffkin, P. A., & Nuttall, J. G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, 109–119. https://doi.org/10.1016/j.fcr.2014.11.010

    Article  Google Scholar 

  6. Bathiany, S., Dakos, V., Scheffer, M., & Lenton, T. M. (2018). Climate models predict increasing temperature variability in poor countries. Science Advances, 4(5), eaar5809. https://doi.org/10.1126/sciadv.aar5809

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chakrabarti, B., Singh, S. D., Kumar, V., Harit, R. C., & Misra, S. (2013). Growth and yield response of wheat and chickpea crops under high temperature. Indian Journal of Plant Physiology, 18(1), 7–14. https://doi.org/10.1007/s40502-013-0002-6

    Article  Google Scholar 

  8. Chen, T. H., Gusta, L. V., & Fowler, D. B. (1983). Freezing injury and root development in winter cereals. Plant Physiology, 73(3), 773–777. https://doi.org/10.1104/pp.73.3.773

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, Y., Zhang, Z., Wang, P., Song, X., Wei, X., & Tao, F. (2016). Identifying the impact of multi-hazards on crop yield: A case for heat stress and dry stress on winter wheat yield in northern China. European Journal of Agronomy, 73, 55–63. https://doi.org/10.1016/j.eja.2015.10.009

    Article  Google Scholar 

  10. Croitoru, A. E., Piticar, A., Imbroane, A. M., & Burada, D. C. (2013). Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extraCarpathian regions of Romania. Theoretical and Applied Climatology, 112, 597–607. https://doi.org/10.1007/s00704-012-0755-2

    Article  Google Scholar 

  11. Croser, C., Renault, S., Franklin, J., & Zwiazek, J. (2001). The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environmental Pollution, 115(1), 9–16. https://doi.org/10.1016/S0269-7491(01)00097-5

    CAS  Article  PubMed  Google Scholar 

  12. Darand, M., & Daneshvar, M. R. (2015). Variation of agro-climatic indices in Kurdistan province of Iran within 1962–2012. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-015-0010-9

    Article  Google Scholar 

  13. Devasirvatham, V., & Tan, D. K. (2018). Impact of high temperature and drought stresses on chickpea production. Agronomy, 8(8), 145. https://doi.org/10.3390/agronomy8080145

    CAS  Article  Google Scholar 

  14. Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C., & Sadras, V. O. (2018). Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agricultural and Forest Meteorology, 248, 275–294. https://doi.org/10.1016/2017.10.006

    Article  Google Scholar 

  15. Fang, X., Turner, N. C., Yan, G., Li, F., & Siddique, K. H. (2010). Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. Journal of Experimental Botany, 61(2), 335–345. https://doi.org/10.1093/jxb/erp307

    CAS  Article  PubMed  Google Scholar 

  16. Gaur, P. M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S. B., Jayalakshmi, V., Mannur, D. M., Vijayakumar, A. G., Ganga Rao, N. V., Ojiewo, C., & Fikre, A. (2019). Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breeding, 138(4), 389–400. https://doi.org/10.1111/pbr.12641

    CAS  Article  Google Scholar 

  17. Hajjarpoor, A., Vadez, V., Soltani, A., Gaur, P., Whitbread, A., Babu, D. S., Gumma, M. K., Diancoumba, M., & Kholová, J. (2018). Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Research, 223, 93–104. https://doi.org/10.1016/j.fcr.2018.03.023

    Article  Google Scholar 

  18. Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  19. Hosseinzadeh, S. R., Amiri, H., & Ismaili, A. (2016). Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, 54(1), 87–92. https://doi.org/10.1007/s11099-015-0162-x

    Article  Google Scholar 

  20. Joseph, J., & LaViola, J. R. (2003). An experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms. IEEE Virtual Reality Conference. https://doi.org/10.1109/VR.2003.1191164

    Article  Google Scholar 

  21. Kheiri, M., Soufizadeh, S., Ghaffari, A., AghaAlikhani, M., & Eskandari, A. (2017). Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 141(4), 703–717. https://doi.org/10.1007/s10584-017-1904-5

    Article  Google Scholar 

  22. Kheiri, M., Soufizadeh, S., Moghaddam, S. M., & Ghaffari, A. (2021). Exploring the impact of weather variability on phenology, length of growing period, and yield of contrast dryland wheat cultivars. Agricultural Research. https://doi.org/10.1007/s40003-020-00523-x

    Article  Google Scholar 

  23. Leport, L., Turner, N. C., Davies, S. L., & Siddique, K. H. (2006). Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy, 24(3), 236–246. https://doi.org/10.1016/j.eja.2005.08.005

    Article  Google Scholar 

  24. Ludwig, F., Milroy, S. P., & Asseng, S. (2009). Impacts of recent climate change on wheat production systems in Western Australia. Climatic Change, 92(3–4), 495–517. https://doi.org/10.1007/s10584-008-9479-9

    Article  Google Scholar 

  25. MAJ. (2018). Ministry of Agriculture-Jahad. Distribution of cropping area and crop productivity in Iran. https://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj1-97-98-site.pdf. Accessed Mar 2019

  26. Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., Gobin, A., Olesen, J. E., Bindi, M., Ferrise, R., & Moriondo, M. (2018). Sensitivity of European wheat to extreme weather. Field Crops Research, 222, 209–217. https://doi.org/10.1016/j.fcr.2017.11.008

    Article  Google Scholar 

  27. Mera, R. J., Niyogi, D., Buol, G. S., Wilkerson, G. G., & Semazzi, F. H. (2006). Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change, 54(1–2), 163–182. https://doi.org/10.1016/j.gloplacha.2005.11.003

    Article  Google Scholar 

  28. Nouri, M., & Bannayan, M. (2019). On soil moisture deficit, low precipitation, and temperature extremes impacts on rainfed cereal productions in Iran. Theoretical and Applied Climatology, 137(3), 2771–2783. https://doi.org/10.1007/s00704-019-02766-3

    Article  Google Scholar 

  29. Rani, A., Devi, P., Jha, U. C., Sharma, K. D., Siddique, K. H., & Nayyar, H. (2020). Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Frontiers in Plant Science, 10, 1759. https://doi.org/10.3389/fpls.2019.01759

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257(1), 219–226. https://doi.org/10.1023/A:1026237816578

    CAS  Article  Google Scholar 

  31. Singh, P., Nedumaran, S., Boote, K. J., Gaur, P. M., Srinivas, K., & Bantilan, M. C. S. (2014). Climate change impacts and potential benefits of drought and heat tolerance in chickpea in South Asia and East Africa. European Journal of Agronomy, 52, 123–137. https://doi.org/10.1016/j.eja.2013.09.018

    Article  Google Scholar 

  32. Soltani, A., Hammer, G. L., Torabi, B., Robertson, M. J., & Zeinali, E. (2006). Modeling chickpea growth and development: Phenological development. Field Crops Research, 99(1), 1–13. https://doi.org/10.1016/j.fcr.2006.02.004

    Article  Google Scholar 

  33. Soltani, A., Khooie, F. R., Ghassemi-Golezani, K., & Moghaddam, M. (2001). A simulation study of chickpea crop response to limited irrigation in a semiarid environment. Agricultural Water Management, 49(3), 225–237. https://doi.org/10.1016/S0378-3774(00)00143-8

    Article  Google Scholar 

  34. Soltani, A., & Sinclair, T. R. (2012). Optimizing chickpea phenology to available water under current and future climates. European Journal of Agronomy, 38, 22–31. https://doi.org/10.1016/j.eja.2011.11.010

    Article  Google Scholar 

  35. Tabari, H., & Aghajanloo, M. B. (2013). Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology, 33(2), 396–409. https://doi.org/10.1002/joc.3432

    Article  Google Scholar 

  36. Tabari, H., Talaee, P. H., Nadoushani, S. M., Willems, P., & Marchetto, A. (2014). A survey of temperature and precipitation based aridity indices in Iran. Quaternary International, 345, 158–166. https://doi.org/10.1016/j.quaint.2014.03.061

    Article  Google Scholar 

  37. Tack, J., Barkley, A., & Nalley, L. L. (2015). Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences of the United States of America, 112(22), 6931–6936. https://doi.org/10.1073/pnas.1415181112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Upadhyaya, H. D., Dronavalli, N., Gowda, C. L., & Singh, S. (2011). Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Science, 51(5), 2079–2094. https://doi.org/10.2135/cropsci2011.01.0018

    Article  Google Scholar 

  39. Varol, I. S., Kardes, Y. M., Irik, H. A., Kirnak, H., & Kaplan, M. (2020). Supplementary irrigations at different physiological growth stages of chickpea (Cicer arietinum L.) change grain nutritional composition. Food Chemistry, 303, 125402. https://doi.org/10.1016/j.foodchem.2019.125402

    CAS  Article  PubMed  Google Scholar 

  40. Wang, J., Gan, Y. T., Clarke, F., & McDonald, C. L. (2006). Response of chickpea yield to high temperature stress during reproductive development. Crop Science, 46(5), 2171–2178. https://doi.org/10.2135/cropsci2006.02.0092

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Affiliations

Authors

Contributions

Conceptualization, MK; methodology, MK; validation, MK, JK, and RD; formal analysis, MK, JK, RD, and SMM; investigation, MK, RD, and IY; writing—original draft preparation, MK; writing—review and editing, MK, JK, RD, IY, and SMM; supervision, JK and RD. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jafar Kambouzia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kheiri, M., Kambouzia, J., Deihimfard, R. et al. Response of Rainfed Chickpea Yield to Spatio-Temporal Variability in Climate in the Northwest of Iran. Int. J. Plant Prod. 15, 499–510 (2021). https://doi.org/10.1007/s42106-021-00153-5

Download citation

Keywords

  • Climate variability
  • Impact analysis
  • Climate adaptation
  • Legumes
  • Semi-arid regions