Skip to main content

Tillage Methods on Greenhouse Gas Emissions and Yields of Rice–Wheat Rotation System in East China Polder Area

Abstract

The subtropical region in Eastern China, with abundant hydrothermal resources and widely distributed lowland polders, is a traditional agricultural production area. The rice–wheat rotation system is often regarded as a dominant source of agricultural greenhouse gas (GHG) emissions. Under the general trend of global warming, it is of vital significance to explore farmland production methods for the reduction of GHGs. The study was based on a three-year field experiment conducted to investigate the effects of tillage methods (CF, conventional farming; OF, optimized fertilization; OF + N, optimized fertilization + no-tillage; OF + S, optimized fertilization + straw return) on the emissions of methane (CH4) and nitrous oxide (N2O) collected by way of “closed static box-gas chromatography”. The factors needing simultaneously monitored are atmospheric temperature, 5 cm ground temperature, soil redox potential (Eh), etc. Among the total Global warming potential (GWP) processed by CF, OF, OF + N, and OF + S, the GWP produced by CH4 accounted for 86.01%, 88.23%, 86.34%, and 88.96%, respectively; The sequence of the total yields of rice and wheat is: OF > CF > OF + N > OF + S, the GWP is CF > OF + S > OF > OF + N, and that of greenhouse gas emission intensity (GHGI) is CF > OF + S > OF + N > OF. Comprehensively, tillage methods have great potential to reduce GWP, and OF is considered the optimal tillage method to achieve effective greenhouse gases reduction while ensuring stable and increased production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bai, N., et al. (2020). Long-term effects of straw return and straw-derived biochar amendment on bacterial communities in soil aggregates. Science and Reports, 10, 7891. https://doi.org/10.1038/s41598-020-64857-w

    CAS  Article  Google Scholar 

  2. Beata, R., Wiesław, S., Ewa, S., Monika, S., & Tamara, J. (2017). Soil N2O emissions under conventional and reduced tillage methods and maize cultivation. Plant, Soil and Environment, 63, 342–347. https://doi.org/10.17221/291/2017-pse

    CAS  Article  Google Scholar 

  3. Berhane, M., Xu, M., Liang, Z., Shi, J., Wei, G., & Tian, X. (2020). Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis. Global Change Biology. https://doi.org/10.1111/gcb.15018

    Article  PubMed  Google Scholar 

  4. Campanha, M. M., et al. (2019). Effect of soil tillage and N fertilization on N2O mitigation in maize in the Brazilian Cerrado. Science of the Total Environment, 692, 1165–1174. https://doi.org/10.1016/j.scitotenv.2019.07.315

    CAS  Article  Google Scholar 

  5. Castaldi, S., et al. (2011). Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere, 85, 1464–1471. https://doi.org/10.1016/j.chemosphere.2011.08.031

    CAS  Article  PubMed  Google Scholar 

  6. Cui, F., Yan, G., Zhou, Z., Zheng, X., & Deng, J. (2012). Annual emissions of nitrous oxide and nitric oxide from a wheat–maize cropping system on a silt loam calcareous soil in the North China. Plain Soil Biology and Biochemistry, 48, 10–19. https://doi.org/10.1016/j.soilbio.2012.01.007

    CAS  Article  Google Scholar 

  7. Evans, C. D., et al. (2021). Overriding water table control on managed peatland greenhouse gas emissions. Nature, 593, 548–552. https://doi.org/10.1038/s41586-021-03523-1

    CAS  Article  PubMed  Google Scholar 

  8. Fan, Y., Hao, X., Carswell, A., Misselbrook, T., Ding, R., Li, S., & Kang, S. (2021). Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system. Soil and Tillage Research. https://doi.org/10.1016/j.still.2020.104848

    Article  Google Scholar 

  9. Gao, Q., et al. (2021). Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile. Science of the Total Environment, 762, 143116. https://doi.org/10.1016/j.scitotenv.2020.143116

    CAS  Article  Google Scholar 

  10. Green, S. M., Baird, A. J., Evans, C. D., Peacock, M., Holden, J., Chapman, P. J., & Smart, R. P. (2018). Methane and carbon dioxide fluxes from open and blocked ditches in a blanket bog. Plant and Soil, 424, 619–638. https://doi.org/10.1007/s11104-017-3543-z

    CAS  Article  Google Scholar 

  11. Haque, M. M., Kim, G. W., Kim, P. J., & Kim, S. Y. (2016). Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping. Field Crops Research, 193, 133–142. https://doi.org/10.1016/j.fcr.2016.04.007

    Article  Google Scholar 

  12. He, L., Lu, S., Wang, C., Mu, J., Zhang, Y., & Wang, X. (2021). Changes in soil organic carbon fractions and enzyme activities in response to tillage practices in the Loess Plateau of China. Soil andTillage Research. https://doi.org/10.1016/j.still.2021.104940

    Article  Google Scholar 

  13. Hou, H., Yang, S., Wang, F., Li, D., & Xu, J. (2016). Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice–winter wheat rotation systems in Southeast China. Ecological Engineering, 86, 239–246. https://doi.org/10.1016/j.ecoleng.2015.11.022

    Article  Google Scholar 

  14. Hu, F., Chai, Q., Yu, A., Yin, W., Cui, H., & Gan, Y. (2014). Less carbon emissions of wheat–maize intercropping under reduced tillage in arid areas. Agronomy for Sustainable Development, 35, 701–711. https://doi.org/10.1007/s13593-014-0257-y

    CAS  Article  Google Scholar 

  15. Hu, N., et al. (2016). Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice–wheat rotation system. Agriculture, Ecosystems & Environment, 223, 115–122. https://doi.org/10.1016/j.agee.2016.02.027

    CAS  Article  Google Scholar 

  16. Huang, Y., et al. (2018). Greenhouse gas emissions and crop yield in no-tillage systems: a meta-analysis. Agriculture, Ecosystems & Environment, 268, 144–153. https://doi.org/10.1016/j.agee.2018.09.002

    CAS  Article  Google Scholar 

  17. Jin, W., Cao, W., Liang, F., Wen, Y., Wang, F., Dong, Z., & Song, H. (2020). Water management impact on denitrifier community and denitrification activity in a paddy soil at different growth stages of rice. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2020.106354

    Article  Google Scholar 

  18. Ju, X., et al. (2011). Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environmental Pollution, 159, 1007–1016. https://doi.org/10.1016/j.envpol.2010.10.040

    CAS  Article  PubMed  Google Scholar 

  19. Lan, T., Han, Y., Roelcke, M., Nieder, R., & Cai, Z. (2013). Processes leading to N2O and NO emissions from two different Chinese soils under different soil moisture contents. Plant and Soil, 371, 611–627. https://doi.org/10.1007/s11104-013-1721-1

    CAS  Article  Google Scholar 

  20. Li, B., Fan, C. H., Zhang, H., Chen, Z. Z., Sun, L. Y., & Xiong, Z. Q. (2015). Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment, 100, 10–19. https://doi.org/10.1016/j.atmosenv.2014.10.034

    CAS  Article  Google Scholar 

  21. Li, S. H., Guo, L. J., Cao, C. G., & Li, C. F. (2021). Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environmental Science and Pollution Research International, 28, 5742–5754. https://doi.org/10.1007/s11356-020-10914-w

    CAS  Article  PubMed  Google Scholar 

  22. Liu, S., Zhang, Y., Lin, F., Zhang, L., & Zou, J. (2013). Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant and Soil, 374, 285–297. https://doi.org/10.1007/s11104-013-1878-7

    CAS  Article  Google Scholar 

  23. Maier, M., Longdoz, B., Laemmel, T., Schack-Kirchner, H., & Lang, F. (2017). 2D profiles of CO2, CH4, N2O and gas diffusivity in a well aerated soil: measurement and fianite element modeling. Agricultural and Forest Meteorology, 247, 21–33. https://doi.org/10.1016/j.agrformet.2017.07.008

    Article  Google Scholar 

  24. McNamara, N. P., et al. (2015). Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden. PLoS One, 10, e0129892. https://doi.org/10.1371/journal.pone.0129892

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Montoya-González, A., et al. (2009). Straw management, crop rotation and nitrogen source effect on carbon and nitrogen dynamics: a laboratory study. Plant and Soil, 325, 243–253. https://doi.org/10.1007/s11104-009-9975-3

    CAS  Article  Google Scholar 

  26. Nielsen, C. S., Michelsen, A., Ambus, P., Deepagoda, T. K. K. C., & Elberling, B. (2016). Linking rhizospheric CH4 oxidation and net CH4 emissions in an arctic wetland based on 13CH4 labeling of mesocosms. Plant and Soil, 412, 201–213. https://doi.org/10.1007/s11104-016-3061-4

    CAS  Article  Google Scholar 

  27. Nobrega, G. N., et al. (2016). Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil). Science of the Total Environment, 542, 685–693. https://doi.org/10.1016/j.scitotenv.2015.10.108

    CAS  Article  Google Scholar 

  28. Pratibha, G., et al. (2016). Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India. Atmospheric Environment, 145, 239–250. https://doi.org/10.1016/j.atmosenv.2016.09.039

    CAS  Article  Google Scholar 

  29. Rong, Y., Ma, L., & Johnson, D. A. (2015). Methane uptake by four land-use types in the agro-pastoral region of northern China. Atmospheric Environment, 116, 12–21. https://doi.org/10.1016/j.atmosenv.2015.06.003

    CAS  Article  Google Scholar 

  30. Sainju, U. M. (2015). Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites. Journal of Environmental Protection, 06, 1042–1056. https://doi.org/10.4236/jep.2015.69092

    Article  Google Scholar 

  31. Sapkota, T., et al. (2017). Reducing global warming potential through sustainable intensification of basmati rice-wheat systems in India. Sustainability. https://doi.org/10.3390/su9061044

    Article  Google Scholar 

  32. Shakoor, A., et al. (2018). Effects of fertilizer application schemes and soil environmental factors on nitrous oxide emission fluxes in a rice-wheat cropping system, east China. PLoS One, 13, e0202016. https://doi.org/10.1371/journal.pone.0202016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Smith, P., et al. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 789–813. https://doi.org/10.1098/rstb.2007.2184

    CAS  Article  PubMed  Google Scholar 

  34. Song, H., et al. (2020). A 4-year field measurement of N2O emissions from a maize-wheat rotation system as influenced by partial organic substitution for synthetic fertilizer. Journal of Environmental Management, 263, 110384. https://doi.org/10.1016/j.jenvman.2020.110384

    CAS  Article  PubMed  Google Scholar 

  35. Tellez-Rio, A., Garcia-Marco, S., Navas, M., Lopez-Solanilla, E., Tenorio, J. L., & Vallejo, A. (2015). N2O and CH4 emissions from a fallow-wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem. Science of the Total Environment, 508, 85–94. https://doi.org/10.1016/j.scitotenv.2014.11.041

    CAS  Article  Google Scholar 

  36. Toczydlowski, A. J. Z., Slesak, R. A., Kolka, R. K., & Venterea, R. T. (2020). Temperature and water-level effects on greenhouse gas fluxes from black ash (Fraxinus nigra) wetland soils in the Upper Great Lakes region, USA. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2020.103565

    Article  Google Scholar 

  37. Toma, Y., Oomori, S., Maruyama, A., Ueno, H., & Nagata, O. (2015). Effect of the number of tillages in fallow season and fertilizer type on greenhouse gas emission from a rice (Oryza sativa L.) paddy field in Ehime, southwestern Japan. Soil Science and Plant Nutrition, 62, 69–79. https://doi.org/10.1080/00380768.2015.1109999

    CAS  Article  Google Scholar 

  38. Vitale, D., & Bilancia, M. (2013). Role of the natural and anthropogenic radiative forcings on global warming: evidence from cointegration–VECM analysis. Environmental and Ecological Statistics, 20, 413–444. https://doi.org/10.1007/s10651-012-0226-z

    Article  Google Scholar 

  39. Wagatsuma, T., Tanaka, K., Iino, Y., Satou, T., Khan, M. S. H., & Tawaraya, K. (2020). Burr marigold (Bidens tripartita L.) roots directly and immediately scavenge rhizosphere methane with highly exuded hydrogen peroxide via a rhizosphere Fenton reaction. Plant and Soil, 459, 289–313. https://doi.org/10.1007/s11104-020-04766-z

    CAS  Article  Google Scholar 

  40. Wang, J., Zhang, X., Xiong, Z., Khalil, M. A. K., Zhao, X., Xie, Y., & Xing, G. (2012). Methane emissions from a rice agroecosystem in South China: effects of water regime, straw incorporation and nitrogen fertilizer. Nutrient Cycling in Agroecosystems, 93, 103–112. https://doi.org/10.1007/s10705-012-9503-3

    CAS  Article  Google Scholar 

  41. Wang, Y., et al. (2014). Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China. PLoS One, 9, e93571. https://doi.org/10.1371/journal.pone.0093571

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, C., Lai, D. Y., Sardans, J., Wang, W., Zeng, C., & Penuelas, J. (2017a). Factors related with CH4 and N2O emissions from a paddy field: clues for management implications. PLoS One, 12, e0169254. https://doi.org/10.1371/journal.pone.0169254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, W., Sardans, J., Wang, C., Zeng, C., Tong, C., Asensio, D., & Peñuelas, J. (2017b). Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southeastern China. Atmospheric Environment, 164, 458–467. https://doi.org/10.1016/j.atmosenv.2017.06.023

    CAS  Article  Google Scholar 

  44. Wu, Z., Lai, X., & Li, K. (2021). Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2020.107021

    Article  Google Scholar 

  45. Yang, B., et al. (2015). Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system. Journal of Environmental Sciences (china), 32, 62–71. https://doi.org/10.1016/j.jes.2014.11.010

    CAS  Article  Google Scholar 

  46. Zhang, X.-b, Wu, L.-h, Sun, N., Ding, X.-s, Li, J.-w, Wang, B.-r, & Li, D.-c. (2014). Soil CO2 and N2O emissions in maize growing season under different fertilizer regimes in an upland red soil region of South China. Journal of Integrative Agriculture, 13, 604–614. https://doi.org/10.1016/s2095-3119(13)60718-2

    CAS  Article  Google Scholar 

  47. Zhang, Z. S., Chen, J., Liu, T. Q., Cao, C. G., & Li, C. F. (2016). Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmospheric Environment, 144, 274–281. https://doi.org/10.1016/j.atmosenv.2016.09.003

    CAS  Article  Google Scholar 

  48. Zhang, W., Li, H., Xiao, Q., & Li, X. (2021). Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape chaohu lake basin. Water Research, 189, 116624. https://doi.org/10.1016/j.watres.2020.116624

    CAS  Article  PubMed  Google Scholar 

  49. Zhao, Z., et al. (2020). Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems. https://doi.org/10.1016/j.agsy.2019.102743

    Article  Google Scholar 

  50. Zhu, T., Zhang, J., Meng, T., Zhang, Y., Yang, J., Müller, C., & Cai, Z. (2014). Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biology and Biochemistry, 73, 106–114. https://doi.org/10.1016/j.soilbio.2014.02.016

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2017YFD0301301).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shuyun Yang or Youhua Ma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhang, T., Yao, Y. et al. Tillage Methods on Greenhouse Gas Emissions and Yields of Rice–Wheat Rotation System in East China Polder Area. Int. J. Plant Prod. 15, 485–498 (2021). https://doi.org/10.1007/s42106-021-00152-6

Download citation

Keywords

  • Tillage methods
  • CH4
  • N2O
  • GWP
  • GHGI