Skip to main content

Characterization of Yields, Osmotic Stress-associated Traits, and Expression Patterns of ABA Receptor Genes in Winter Wheat Under Deficit Irrigation

Abstract

Adoption of water-saving cultivation strategy for cereal crops benefits development of the sustainable agriculture worldwide. In this study, the effects of water supply on agronomic traits, ABA contents, drought response-associated physiological parameters, and expression patterns of the ABA receptor family genes during late stage were investigated. Under normal irrigation condition (NI, with irrigations performed prior to seed sowing, and at stages of jointing and flowering), the wheat cultivars, namely, the drought tolerant Cangmai 14 and the sensitive Jimai 325, displayed comparable agronomic traits (i.e. yields, yield components, and water use efficiencies), ABA contents, and the physiological traits associated with drought stress (i.e., proline and soluble sugar contents, and photosynthetic parameters). Under deficit irrigation (DI, without irrigation at flowering stage compared with NI), Cangmai 14 was much better on the agronomic traits, ABA contents, and the drought response-associated traits at late stage than Jimai 325. These results suggested that the improvement of drought response-associated traits contributed to the enhanced yield formation capacity of the drought-tolerant cultivars. Expression analysis on ABA receptor genes (i.e., PYL family ones) involving ABA signal perception indicated that TaPYL3, TaPYL5 and TaPYL8, three of the PYL family members, modified expression in the tested cultivars upon modified water supply copnditions, with more transcripts detected under DI than NI. Moreover, the expression levels of these genes were all shown to be higher in Cangmai 14 under DI than in Jimai 325. Transgene analysis on TaPYL3 validated that this gene exerted positive roles in modulating biomass production and photosynthetic function of plants under drought treatment. These results suggested the essential function of the ABA signaling genes in modulating plant drought response, whose enhanced transcription efficiencies positively impact on the drought response-associated physiological process, biomass production, and the yield formation capacity of wheat plants treated with DI through possibly an ABA-dependent pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abid, M., Ali, S., Qi, L., Zahoor, R., Tian, Z., Jiang, D., Snider, J., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8, 4615.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. Abid, M., Tian, Z., Ata-Ul-Karim, S. T., Cui, Y., Liu, Y., Zahoor, R., Jiang, D., & Dai, T. (2016). Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Frontiers in Plant Science, 7, 981.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Abuauf, H., Haider, I., Jia, K. P., Ablazov, A., Mi, J., & Blilou, I. (2018). The Arabidopsis DWARF27 gene encodes an all-trans-/9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Science, 277, 33–42.

    CAS  PubMed  Article  Google Scholar 

  4. Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197, 177–185.

    CAS  Article  Google Scholar 

  5. Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., De Winne, N., De Jaeger, G., Dietrich, D., & Bennett, M. J. (2013). PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiology, 161, 931–941.

    CAS  PubMed  Article  Google Scholar 

  6. Bhaskara, G. B., Nguyen, T. T., & Verslues, P. E. (2012). Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiology, 160, 379–395.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Blackman, C. J., Creek, D., Maier, C., Aspinwall, M. J., Drake, J. E., Pfautsch, S., O’Grady, A., Delzon, S., Medlyn, B. E., Tissue, D. T., Choat, B., Blackman, C. J., et al. (2019). Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiology, 39, 910–924.

    CAS  PubMed  Article  Google Scholar 

  8. Chong, L., Guo, P., Zhu, Y., Chong, L., et al. (2020). Mediator complex: A pivotal regulator of ABA signaling pathway and abiotic stress response in plants. International Journal of Molecular Sciences, 21(20), 7755.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  9. Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., & Feller, U. (2009). Drought stress effects on Rubisco in wheat: Changes in the Rubisco large subunit. Acta Physiologae Plantarum, 31, 1129–1138.

    CAS  Article  Google Scholar 

  10. Deng, X. P., Shan, L., Zhang, H. P., & Turner, N. C. (2006). Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural Water Managememt, 80, 23–40.

    Article  Google Scholar 

  11. Du, X., Zhao, X., Liu, X., Guo, C., Lu, W., Gu, J., & Xiao, K. (2013). Overexpression of TaSRK2C1, wheat SNF1-related protein kinase gene, increases tolerance to dehydration, salt, and low temperature in transgenic tobacco. Plant Molecular Biology Reporter, 31, 810–821.

    CAS  Article  Google Scholar 

  12. Duan, B., Yang, Y., Lu, Y., Korpelainen, H., Berninger, F., & Li, C. (2007). Interactions between drought stress, ABA and genotypes in Picea asperata. Journal of Experimental. Botany, 58, 3025–3036.

    CAS  PubMed  Article  Google Scholar 

  13. Earl, H., & Davis, R. F. (2003). Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agronomy Journal, 95, 688–696.

    Article  Google Scholar 

  14. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable. Development, 29, 185–212.

    Article  Google Scholar 

  15. Finkelstein, R. (2013). Abscisic acid synthesis and response. Arabidopsis Book, 11, e0166.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45, 105–114.

    CAS  PubMed  Article  Google Scholar 

  17. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S. Y., Cutler, S. R., Sheen, J., Rodriguez, P. L., & Zhu, J. K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462, 660–664.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Fujii, H., & Zhu, J. K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of USA, 106, 8380–8385.

    CAS  Article  Google Scholar 

  19. Gholami, Z. A., Ehsanzadeh, P., Szumny, A., & Matkowski, A. (2018). Genotype-specific response of Foeniculum vulgare grain yield and essential oil composition to proline treatment under different irrigation conditions. Industrial Crops and Products, 124, 177–185.

    Article  CAS  Google Scholar 

  20. Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., Fernandez, M. A., Holdsworth, M. J., Perez-Amador, M. A., & Kollist, H. (2012). Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. The Plant Cell, 24, 2483–2496.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Guo, C., Zhao, X., Liu, X., Zhang, L., Gu, J., Li, X., Lu, W., & Xiao, K. (2013). Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta, 237, 1163–1178.

    CAS  PubMed  Article  Google Scholar 

  22. He, X., Xu, L., Pan, C., Gong, C., Wang, Y., Liu, X., Yu, Y., He, X., et al. (2020). Drought resistance of Camellia oleifera under drought stress: Changes in physiology and growth characteristics. PLoS ONE, 15(7), e0235795.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Khan, R., Ma, X., Shah, S., Wu, X., Shaheen, A., Xiao, L., Wu, Y., Wang, S., Khan, R., et al. (2020). Drought-hardening improves drought tolerance in Nicotiana tabacum at physiological, biochemical, and molecular levels. BMC Plant Biology, 20(1), 486.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Kim, H., Hwang, H., Hong, J. W., Lee, Y. N., Ahn, I. P., & Yoon, I. S. (2012). A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. Journal of Experimental Botany, 63, 1013–1024.

    CAS  PubMed  Article  Google Scholar 

  25. Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561–591.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Ku, Y. S., Sintaha, M., Cheung, M. Y., Lam, H. M., Ku, Y. S., et al. (2018). Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences, 19(10), 3206.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  27. Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environment, 25, 275–294.

    CAS  Article  Google Scholar 

  28. Li, D., Batchelor, W. D., Zhang, D., Miao, H., Li, H., Song, S., Li, R., Li, D., et al. (2020). Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLoS ONE, 15(8), e0237536.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Li, J., Li, Y., Yin, Z., Jiang, J., Zhang, M., Guo, X., Ye, Z., Zhao, Y., Xiong, H., Zhang, Z., Shao, Y., Jiang, C., Zhang, H., An, G., Paek, N. C., Ali, J., Li, Z., Li, J., et al. (2017). OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H(2) O(2) signalling in rice. Plant Biotechnology Journal, 15, 183–196.

    CAS  PubMed  Article  Google Scholar 

  30. Liang, C., Liu, Y., Li, Y., Meng, Z., Rong, Y., Zhu, T., Wang, Y., Kang, S., Abid, M. A., Malik, W., Sun, G., Guo, S., & Zhang, R. (2017). Activation of ABA receptors gene GhPYL9-11A is positively correlated with cotton drought tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 8, 1453.

    PubMed  PubMed Central  Article  Google Scholar 

  31. Liu, F., Ma, H., Du, Z., Ma, B., Liu, X., Peng, L., Zhang, W., Liu, F., et al. (2019). Physiological response of North China red elder container seedlings to inoculation with plant growth-promoting rhizobacteria under drought stress. PLoS ONE, 14(12), e0226624.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107–153.

    Article  Google Scholar 

  33. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324, 1064–1068.

    CAS  Google Scholar 

  34. Maryam, Y., & Parviz, E. (2017). Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica, 55, 611–622.

    Article  CAS  Google Scholar 

  35. Mei, X. R., Zhong, X. L., Vadez, V., & Liu, X. Y. (2013). Improving water use efficiency of wheat crop varieties in the North China plain: Review and analysis. Journal of Integrative Agronomy, 12, 1243–1250.

    Article  Google Scholar 

  36. Melcher, K., Ng, L. M., Zhou, X. E., Soon, F. F., Xu, Y., Suino-Powell, K. M., Park, S. Y., Weiner, J. J., Fujii, H., & Chinnusamy, V. (2009). A gate lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462, 602–608.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Monakhova, O. F., & Chernyadev, I. I. (2002). Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied Biochemistry and Microbiology, 38, 373–380.

    CAS  Article  Google Scholar 

  38. Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F., & Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell, 14, 3089–3099.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., & Chow, T. F. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, 1068–1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Praba, M. L., Cairns, J. E., Babu, R. C., & Lafitte, H. R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. Journal of Agronomy and Crop Science, 195, 30–46.

    Article  Google Scholar 

  41. Shokat, S., Großkinsky, D. K., Roitsch, T., Liu, F., Shokat, S., et al. (2020). Activities of leaf and spike carbohydrate-metabolic and antioxidant enzymes are linked with yield performance in three spring wheat genotypes grown under well-watered and drought conditions. BMC Plant Biology, 20(1), 400.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Soma, F., Takahashi, F., Suzuki, T., Shinozaki, K., Yamaguchi-Shinozaki, K., Soma, F., et al. (2020). Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nature Communication, 11(1), 1373.

    CAS  Article  Google Scholar 

  43. Sreenivasulu, N., Harshavardhan, V. T., Govind, G., Seiler, C., & Kohli, A. (2012). Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506, 265–273.

    CAS  PubMed  Article  Google Scholar 

  44. Takahashi, F., Kuromori, T., Sato, H., Shinozaki, K., Takahashi, F., et al. (2018). Regulatory gene networks in drought stress responses and resistance in plants. Advances in Experimental Medicine and Biology, 1081, 189–214.

    CAS  PubMed  Article  Google Scholar 

  45. Takahashi, Y., Zhang, J., Hsu, P. K., Ceciliato, P. H. O., Zhang, L., Dubeaux, G., Munemasa, S., Ge, C., Zhao, Y., Hauser, F., Schroeder, J. I., Takahashi, Y., et al. (2020). MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nature Communication, 11, 12.

    CAS  Article  Google Scholar 

  46. Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 114, 10280–10285.

    CAS  Article  Google Scholar 

  47. Turner, N. C., Wright, G. C., & Siddique, K. H. M. (2001). Adaptation of grain legumes (pulses) to water-limited environments. Advances in Agronomy, 71, 193–231.

    Article  Google Scholar 

  48. Verma, R. K., Kumar, V. V., Yadav, S. K., Pushkar, S., Rao, M. V., Chinnusamy, V., Verma, R. K., et al. (2019). Overexpression of ABA receptor PYL10 gene confers drought and cold tolerance to Indica rice. Frontiers in Plant Science, 10, 1488.

    PubMed  PubMed Central  Article  Google Scholar 

  49. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  50. Wang, J. Q., Li, H., Liu, Q., Zeng, L. S., Wang, J. Q., et al. (2020). Effects of exogenous plant hormones on physiological characteristics and yield of sweet potato under drought stress. Ying Yong Sheng Tai Xue Bao, 31, 189–198.

    PubMed  Google Scholar 

  51. Wang, P., Zhao, Y., Li, Z., Hsu, C. C., Liu, X., Fu, L., Hou, Y. J., Du, Y., Xie, S., Zhang, C., Gao, J., Cao, M., Huang, X., Zhu, Y., Tang, K., Wang, X., Tao, W. A., Xiong, Y., Zhu, J. K., Wang, P., et al. (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Molecular Cell, 69, 100–112.

    CAS  PubMed  Article  Google Scholar 

  52. Wang, X. M., Wang, X. K., Su, Y. B., Zhang, H. X., Wang, X. M., et al. (2019). Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of the Total Environment, 653, 120–130.

    CAS  Article  Google Scholar 

  53. Wani, S. H., Kumar, V. 2015. Plant stress tolerance: engineering ABA: a Potent phytohormone. Transcriptomics: An Open Access 3:1000113 10.4172

  54. Wu, J., Liu, M., Lü, A., & He, B. (2014). The variation of the water deficit during the winter wheat growing season and its impact on crop yield in the North China Plain. International Journal of Biometeorology, 58, 1951–1960.

    PubMed  Article  Google Scholar 

  55. Yu, J., Jiang, M., Guo, C., Yu, J., et al. (2019). Crop pollen development under drought: From the phenotype to the mechanism. International Journal of Molecular Sciences, 20(7), 1550.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  56. Zhang, C., Liu, J., Shang, J., Cai, H., Zhang, C., et al. (2018a). Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation. Science of the Total Environment, 631, 677–687.

    Article  CAS  Google Scholar 

  57. Zhang, D., Li, R., Batchelor, W. D., Ju, H., Li, Y., Zhang, D., et al. (2018b). Evaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain. PLoS ONE, 13(1), e0189989.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Zhang, J., Wang, G., Zhou, D., & Xiao, K. (2018c). Yield formation capacity, soil water consumption, property, and plant water use efficiency of wheat under water-saving conditions in North China plain. Turkish Journal of Field Crops, 23(2), 107–116.

    Article  Google Scholar 

  59. Zhang, T., & Huang, Y. (2012). Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008. Journal of the Science of Food and Agriculture, 92, 1643–1652.

    CAS  PubMed  Article  Google Scholar 

  60. Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C., Hu, Y., You, J., Shi, H., Zhu, Y., Gong, Y., Mu, Z., Wang, H., Deng, X., Wang, P., Bressan, R. A., Zhu, J. K., Zhao, Y., et al. (2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of USA, 113, 1949–1954.

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by Chinese National Key Research and Development Project on Science and Technology (2017YFD0300902) and National Natural Science Foundation of China (31872869).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 40 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Guo, L., Lin, R. et al. Characterization of Yields, Osmotic Stress-associated Traits, and Expression Patterns of ABA Receptor Genes in Winter Wheat Under Deficit Irrigation. Int. J. Plant Prod. 15, 419–429 (2021). https://doi.org/10.1007/s42106-021-00146-4

Download citation

Keywords

  • Wheat (Triticum aestivum L.)
  • Deficit irrigation
  • Agronomic traits
  • Drought-associated physiological parameter
  • ABA receptor gene