Skip to main content

Comparing the Corn, Millet and Sorghum as Silage Crops Under Different Irrigation Regime and Nitrogen Fertilizer Levels

Abstract

The present study carried out to evaluate the effects of irrigation regimes (control and water stress) and two nitrogen levels (0, and 112.5 kg ha−1) on dry matter yield and silage quality of proso millet, sorghum and corn plants in 2015–2016. Results showed that dry matter (DM) yields of millet, sorghum and corn plants decreased as a result of water shortage. Under both irrigation regimes, the highest DM yields were observed in sorghum. Water stress also reduced irrigation water use efficiency (IWUE) in millet and corn, while it had no significant effect on that of sorghum. Water shortage led to increases in acid detergent fiber (ADF) and neutral detergent fiber (NDF) in corn and sorghum, whereas no significant differences were observed in millet. Furthermore, water deficit resulted in decreased digestibility in corn and sorghum, while increased it in millet. Under normal irrigation, maximum digestibility was observed in corn, while under water stress, no significant difference was observed between corn and millet. Accordingly, it can be said that sorghum is the best option for planting in arid areas, which has the highest yield and is also acceptable in terms of quality. In addition, nitrogen application is recommended to improve IWUE and forage quality. But, because of its insignificant effect on DM yield under stress conditions, application of nitrogen under stress conditions should be tested at more levels to find out optimum amount of nitrogen use and prevent fertilizer loss.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

ADF:

Acid detergent fiber

CP:

Crude protein

DDM:

Digestible dry matter

DM:

Dry matter

MAD:

The maximum allowable depletion

NDF:

Neutral detergent fiber

NEL :

Net energy for lactation

IWUE:

Irrigation water use efficiency

RFV:

Relative feed value

SDM:

Silage dry matter content

TAW:

Total soil available water

References

  1. Albrizio, R., Todorovic, M., Matic, T., & Stellacci, A. M. (2010). Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crop Research, 115(2), 179–190. https://doi.org/10.1016/j.fcr.2009.11.003

    Article  Google Scholar 

  2. Al-Hakimi, A. M. A. (2006). Counteraction of drought stress on soybean plants by seed soaking salicylic acid. International Journal of Botany, 2, 421–426.

    CAS  Article  Google Scholar 

  3. Al-Kaisi, M. M., & Yin, X. (2003). Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency. Agronomy Journal, 95, 1475–1482. https://doi.org/10.2134/agronj2003.1475

    Article  Google Scholar 

  4. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration–guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. FAO.

    Google Scholar 

  5. Bahrani, M. J., Bahrami, H., & Haghighi, A. A. K. (2010). Effect of water stress on ten forage grasses native or introduced to Iran. Grassland Science, 56, 1–5. https://doi.org/10.1111/j.1744-697X.2009.00165.x

    Article  Google Scholar 

  6. Benett, C. G. S., Buzetti, S., Silva, K. S., Bergamaschine, A. F., & Fabricio, J. A. (2008). Yield and bromatologic composition of marandu grass as function of sources and doses of nitrogen. Ciência e Agrotecnologia, 32, 1629–1636. https://doi.org/10.1590/S1413-70542008000500041

    Article  Google Scholar 

  7. Bernardes, T. F., Gervásio, J. R. S., De Morais, G., & Casagrande, D. R. (2019). Technical note: A comparison of methods to determine pH in silages. Journal of Dairy Science, 102, 9039–9042. https://doi.org/10.3168/jds.2019-16553

    CAS  Article  PubMed  Google Scholar 

  8. Brueck, H. (2008). Effects of nitrogen supply on water use efficiency of higher plants. Journal of Plant Nutrition and Soil Science, 171, 210–219. https://doi.org/10.1002/jpln.200700080

    CAS  Article  Google Scholar 

  9. Cai, Q., Zhang, Y., Sun, Z., Zheng, J., Bai, W., Zhang, Y., Liu, Y., Feng, L., Feng, C., & Zhang, Z. (2017). Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences, 14(16), 3851–3858. https://doi.org/10.5194/bg-14-3851-2017

    Article  Google Scholar 

  10. Cherney, J. H., & Hall, M. H. (2008). Forage quality in perspectives: Agronomy facts (pp. 1–4). The Pennsylvania State University.

    Google Scholar 

  11. Cox, W. J., & Cherney, D. J. R. (2001). Row spacing, plant density, and nitrogen effects on corn silage. Agronomy Journal, 93, 597–602. https://doi.org/10.2134/agronj2001.933597x

    Article  Google Scholar 

  12. Delevatti, L. M., Cardoso, A. S., Barbero, R. P., Leite, R. G., Romanzini, E. P., Ruggieri, A. C., & Reis, R. A. (2019). Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Scientific Reports, 9, 759. https://doi.org/10.1038/s41598-019-44138-x

    CAS  Article  Google Scholar 

  13. Diouf, O., & Broum, Y. (2004). Response of pearl millet to nitrogen as affected by water deficit. Agronomie, 24, 77–84. https://doi.org/10.1051/agro:2004001

    Article  Google Scholar 

  14. Fariaszewska, A., Aper, J., Van Huylenbroeck, J., De Swaef, T., Baert, J., & Pecio, Ł. (2020). Physiological and biochemical responses of forage grass varieties to mild drought stress under field conditions. International Journal of Plant Production. https://doi.org/10.1007/s42106-020-00088-3

    Article  Google Scholar 

  15. Ferreira, G., & Brown, A. N. (2016). Environmental factors affecting corn quality for silage production. In T. Da Silva & E. M. Santos (Eds.), Advances in Silage Production and Utilization, (pp. 39–51). InTech.

  16. Fulgueira, C. L., Amigot, S. L., Gaggiotti, M., Romero, L. A., & Basilico, J. C. (2007). Forage quality: Techniques for testing. Fresh Produce Journal, 1, 121–131.

    Google Scholar 

  17. Haung, R., Duncan, R., & Carrow, R. N. (1997). Drought resistance mechanisms of seven warm season turf grass-soil drying. Crop Science, 37, 1858–1663. https://doi.org/10.2135/cropsci1997.0011183X003700060033x

    Article  Google Scholar 

  18. Hopkins, A., & Wilkins, R. J. (2006). Temperate grassland: Key developments in the last century and future perspectives. The Journal of Agricultural Science, 144, 503–523. https://doi.org/10.1017/S0021859606006496

    CAS  Article  Google Scholar 

  19. Horrocks, R. D., & Vallentine, J. F. (1999). Harvested forages. Academic Press.

    Google Scholar 

  20. Islam, M. R., Garcia, S. C., & Horadagoda, A. (2012). Effects of irrigation and rates and timing of nitrogen fertilizer on dry matter yield, proportions of plant fractions of maize and nutritive value and in vitro gas production characteristics of whole crop maize silage. Animal Feed Science and Technology, 172, 125–135. https://doi.org/10.1016/j.anifeedsci.2011.11.013

    CAS  Article  Google Scholar 

  21. Jahansouz, M. R., Keshavarz Afshar, R., Heidari, H., & Hashemi, M. (2014). Evaluation of yield and quality of sorghum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. Jordan Journal of Agricultural Sciences, 10(4), 699–714.

    Article  Google Scholar 

  22. Jensen, K. B., Asay, K. H., Waldron, B. L., Johnson, D. A., & Monaco, T. A. (2003). Forage nutritional characteristics of orchardgrass and perennial ryegrass at five irrigation levels. Agronomy Journal, 95, 668–675. https://doi.org/10.2134/agronj2003.0668

    Article  Google Scholar 

  23. Jiang, Y., Yao, Y., & Wang, Y. (2012). Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery. Crop Science, 52, 2718–2727. https://doi.org/10.2135/cropsci2012.03.0198

    CAS  Article  Google Scholar 

  24. Kaplan, M., Baran, O., Unlukara, A., Kale, H., Arsalan, M., Kara, K., Beyzi, S. B., Konca, Y., & Ulas, A. (2016). The effects of different nitrogen doses and irrigation levels on yield, nutritive value, fermentation and gas production of corn silage. Turkish Journal of Field Crops, 21(1), 101–109. https://doi.org/10.17557/tjfc.82794

    Article  Google Scholar 

  25. Kaplan, M., Kara, K., Unlukara, A., Kale, H., Buyukkilic Beyzi, S., Varol, I. S., Kizilsimsek, M., & Kamalak, A. (2019). Water deficit and nitrogen affects yield and feed value of sorghum sudangrass silage. Agricultural Water Management, 218, 30–36. https://doi.org/10.1016/j.agwat.2019.03.021

    Article  Google Scholar 

  26. Keshavarz Afshar, R., Chaichi, M. R., Moghadam, H., & Ehteshami, S. M. R. (2012). Responses of forage turnip (Brassica rapa) to different phosphorous fertilizers under deficit irrigation regimes. Agricultural Research, 1, 370–378.

    CAS  Article  Google Scholar 

  27. Kim, T. W., & Jehanzaib, M. (2020). Drought risk analysis, forecasting and assessment under climate change. Water, 12, 1862. https://doi.org/10.3390/w12071862

    Article  Google Scholar 

  28. Küchenmeister, K., Küchenmeister, F., Kayser, M., Wrange-Monning, N., & Isselstein, J. (2013). Influence of drought stress on nutritive value of perennial forage legumes. International Journal of Plant Production, 7, 693–710.

    Google Scholar 

  29. Li, C. J., Xu, Z. H., Dong, Z. X., Shi, S. L., & Zhang, J. G. (2016). Effects of nitrogen application rate on the yields, nutritive value and silage fermentation quality of whole-crop wheat. Asian-Australasian Journal of Animal Sciences, 29(8), 1129–1135. https://doi.org/10.5713/ajas.15.0737

    CAS  Article  PubMed  Google Scholar 

  30. Marsalis, M. A., Angadi, S. V., & Contreras-Govea, F. E. (2010). Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crop Research, 116, 52–57. https://doi.org/10.1016/j.fcr.2009.11.009

    Article  Google Scholar 

  31. Medrano, H., Tomas, M., Martorell, S., Flexas, J., Hernandez, E., Rossello, J., et al. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop Journal, 3(3), 220–228. https://doi.org/10.1016/j.cj.2015.04.002

    Article  Google Scholar 

  32. Moorby, J. M., Evans, R. T., Scollan, N. D., Mac Rae, J. C., & Theodorou, M. K. (2006). Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.). Evaluation in dairy cows in early lactation. Grass and Forage Science, 61, 52–59. https://doi.org/10.1046/j.1365-2494.2001.00288.x

    CAS  Article  Google Scholar 

  33. Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257. https://doi.org/10.1038/nature11420

    CAS  Article  PubMed  Google Scholar 

  34. Nambiar, P. T. C., Rego, T. J., & Rao, B. S. (1986). Comparison of the requirements and utilization of nitrogen by genotypes of sorghum (Sorghum bicolor (L.) Moench), and nodulating and non-nodulating groundnut (Arachis hypogaea L.). Field Crop Research, 15(2), 165–179. https://doi.org/10.1016/0378-4290(86)90085-7

    Article  Google Scholar 

  35. Nematpour, A., Eshghizadeh, H. R., & Zahedi, M. (2019a). Drought-tolerance mechanisms in foxtail millet (Setaria italica) and proso millet (Panicum miliaceum) under different nitrogen supply and sowing dates. Crop and Pasture Science, 70, 442–452. https://doi.org/10.1071/CP18501

    Article  Google Scholar 

  36. Nematpour, A., Eshghizadeh, H. R., Zahedi, M., & Gheysari, M. (2019b). Interactive effects of sowing date and nitrogen fertilizer on water and nitrogen use efficiency in millet cultivars under drought stress. Journal of Plant Nutrition. https://doi.org/10.1080/01904167.2019.1659351

    Article  Google Scholar 

  37. Novozamsky, I., Van Eck, R., Van Schouwenburg, J. C. H., & Walinga, I. (1974). Total nitrogen determination in plant material by means of the indophenol blue method. Netherlands Journal of Agricultural Science, 22, 3–5. https://doi.org/10.18174/njas.v22i1.17230

    CAS  Article  Google Scholar 

  38. Rafiee, M., & Kalhor, M. (2016). Economic water use efficiency of corn (Zea mays L.) hybrids as affected by irrigation regimes: a case study in West Iran. Archives of Agronomy and Soil Science, 62(6), 781–789. https://doi.org/10.1080/03650340.2015.1105360

    Article  Google Scholar 

  39. Rostamza, M., Chaichi, M. R., Jahansouz, M. R., & Alimadadi, A. (2011). Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels. Agricultural Water Management, 98, 1607–1614. https://doi.org/10.1016/j.agwat.2011.05.014

    Article  Google Scholar 

  40. Schindler, U., Steidl, J., Müller, L., Eulenstein, F., & Thiere, J. (2007). Drought risk to agricultural land in Northeast and Central Germany. Journal of Plant Nutrition and Soil Science, 170, 357–362. https://doi.org/10.1002/jpln.200622045

    CAS  Article  Google Scholar 

  41. Seguin, P., Mustafa, A. F., & Sheaffer, C. C. (2002). Effects of soil moisture deficit on forage quality, digestibility and protein fractionation of Kura clover. Journal of Agronomy and Crop Science, 188, 260–266. https://doi.org/10.1046/j.1439-037X.2002.00569.x

    Article  Google Scholar 

  42. Sheaffer, C. C., Halgerson, J. L., & Jung, H. G. (2006). Hybrid and N fertilization affect corn silage yield and quality. Journal of Agronomy and Crop Science, 192, 278–283. https://doi.org/10.1111/j.1439-037X.2006.00210.x

    CAS  Article  Google Scholar 

  43. Taiz, L., & Zeiger, E. (2010) Plant Physiology. (5th Ed, pp. 782). Sinauer Associates Inc., Sunderland

  44. Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47, 123–138. https://doi.org/10.3354/cr00953

    Article  Google Scholar 

  45. Turgut, I., Bilgili, U., Duman, A., & Acikgoz, E. (2005). Production of sweet sorghum (Sorghum bicolor L. Moench) increases with increased plant densities and nitrogen fertilizer levels. Acta Agriculturae Scandinavica, 55, 236–240. https://doi.org/10.1080/09064710510029051

    Article  Google Scholar 

  46. Van Soset, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  47. Vanzant, E. S., Cochran, R. C., & Titgemeyer, E. C. (1998). Standardization of in situ techniques for ruminant feedstuff evaluation. Journal of Animal Science, 76, 2717–2729. https://doi.org/10.2527/1998.76102717x

    CAS  Article  PubMed  Google Scholar 

  48. Weinberg, Z. G., Bar-Tal, A., Chen, Y., Gamburg, M., Brener, S., Dvash, L., et al. (2007). The effects of irrigation and nitrogen fertilization on the ensiling of safflower (Carthamus tinctorius). Animal Feed Science and Technology, 134, 152–161. https://doi.org/10.1016/j.anifeedsci.2006.05.009

    CAS  Article  Google Scholar 

  49. Yadav, O., & Bhatnagar, S. (2001). Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions. Field Crop Research, 70, 201–208. https://doi.org/10.1016/S0378-4290(01)00138-1

    Article  Google Scholar 

  50. Yan, H., Shang, A., Peng, Y., Yu, P., & Li, C. (2011). Covering middle leaves and ears reveals differential regulatory roles of vegetative and reproductive organs in root growth and nitrogen uptake in maize. Crop Science, 51, 265–272. https://doi.org/10.2135/cropsci2010.03.0180

    Article  Google Scholar 

  51. Yosef, E., Carmi, A., Nikbachat, M., Zenou, A., Umiel, N., & Miron, J. (2009). Characteristics of tall versus short-type varieties of forage sorghum grown under two irrigation levels, for summer and subsequent fall harvests, and digestibility by sheep of their silages. Animal Feed Science and Technology, 152, 1–11. https://doi.org/10.1016/j.anifeedsci.2009.01.018

    Article  Google Scholar 

  52. Zegada-Lizarazu, W., & Iijima, M. (2005). Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Production Science, 8, 454–460. https://doi.org/10.1626/pps.8.454

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Isfahan University of Technology for the facilities provided to conduct this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Eshghizadeh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nematpour, A., Eshghizadeh, H.R. & Zahedi, M. Comparing the Corn, Millet and Sorghum as Silage Crops Under Different Irrigation Regime and Nitrogen Fertilizer Levels. Int. J. Plant Prod. 15, 351–361 (2021). https://doi.org/10.1007/s42106-021-00142-8

Download citation

Keywords

  • Digestibility
  • Irrigation regime
  • Nitrogen
  • Silage quality
  • Water limited area