Improved Crop Management Achieved High Wheat Yield and Nitrogen Use Efficiency

Abstract

Approaches to meet increasing demand for cereals while improving agricultural resource use efficiency have been extensively studied. However, the dominant intensive agricultural paradigm still considers high yield and increased nitrogen use efficiency (NUE) to be contradictory goals. The objective of this study was to determine whether increased yield requires a proportional increase in N application. Two groups of N treatments were compared at 33 field sites in four wheat producing provinces of China. With a high-yield system (HY), the average yield, PFPN and AEN were 42.3, 37.6 and 38.7% higher than current farming practice (CP), respectively. The average estimated maximum grain yield for HY was 8563 kg ha–1 over 2 years, 2007 and 2008, which was 44.2% higher than under CP (5938 kg ha–1). The optimal N rate for HY was 185 kg ha−1, which was significantly higher than that under CP (149 kg ha−1). The increased wheat yield with HY was accompanied by 24.1% increase in optimal N rate. Significant relationships were found between 0-N (unfertilized control) yield and the estimated maximum yield and AEN with HY and CP. There were also decreasing trends for PFPN and AEN with increasing N rate in HY and CP. These on-farm observations indicate that achieving increased yield does not require a proportional increase in the amount of N fertilizer, which provides a win–win opportunity to meet food demand while improving NUE.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bruinsma, J. (2011). The resources outlook: by how much do land, water and crop yields need to increase by 2050? Food and Agriculture Organization of the United Nations, 233–278

  2. Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Nitrogen-use efficiency, and nitrogen management. Ambio, 31, 132–140.

    Article  Google Scholar 

  3. Cerrato, M. E., & Blackmer, A. M. (1990). Comparison of models for describing corn yield response to nitrogen fertilizer. Agronomy Journal, 82, 138–143.

    Article  Google Scholar 

  4. Chen, X. P., Cui, Z. L., Fan, M. S., Vitousek, P., Zhao, M., Ma, W. Q., Zhang, W. F., Yan, X. Y., Yang, J. C., Deng, X. L., Gao, Q., Zhang, Q., Guo, S. W., Ren, J., Li, S. Q., Ye, Y. L., Wang, Z. H., Huang, J., Tang, Q., … Zhang, F. S. (2014). Producing more grain with lower environmental costs. Nature, 514, 486–489.

    CAS  Article  Google Scholar 

  5. Chen, X. P., Cui, Z. L., Vitousek, P. M., Cassman, K. G., Matson, P. A., Bai, J. S., Meng, Q. F., Hou, P., Yue, S. C., & Römheld, V. (2011). Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 108, 6399–6404.

    CAS  Article  Google Scholar 

  6. Costabr, R., Pinheiro, N., Almeida, A., Gomes, C., Coutinho, J., & Coco, J. (2013). Effect of sowing date and seeding rate on bread wheat yield and test weight under Mediterranean conditions. Emirates Journal of Food & Agriculture, 25, 951–961.

    Article  Google Scholar 

  7. Cui, Z. L., Yue, S. C., Wang, G. L., Zhang, F. S., & Chen, X. P. (2013). In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology, 47, 6015–6022.

    CAS  Article  Google Scholar 

  8. Cui, Z. L., Zhang, F. S., Chen, X. P., Miao, Y. X., & Li, J. L. (2008a). On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 105, 48–55.

    Article  Google Scholar 

  9. Cui, Z. L., Zhang, F. S., Chen, X. P., Miao, Y. X., & Li, J. L. (2008b). On-farm estimation of indigenous nitrogen supply for site-specific nitrogen management in the North China plain. Nutrient Cycling in Agroecosystems, 81, 37–47.

    Article  Google Scholar 

  10. Fan, M. S., Lal, R., Cao, J., Qiao, L., Su, Y., Jiang, R. F., & Zhang, F. S. (2013). Plant-based assessment of inherent soil productivity and contributions to China’s cereal crop yield increase since 1980. PLoS ONE, 8, e74617.

    CAS  Article  Google Scholar 

  11. FAO. (2012). FAOSTAT Database. FAO. http://faostat.fao.org

  12. FAO. (2014). FAOSTAT Database. FAO. http://faostat.fao.org

  13. Fischer, R. A., Byerlee, D., & Edmeades, G. O. (2014). Crop yields and global food security: will yield increase continue to feed the world? Food Security, 6(6), 903–904.

    Article  Google Scholar 

  14. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., & Johnston, M. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    CAS  Article  Google Scholar 

  15. Hall, A. J., & Richards, R. A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143, 18–33.

    Article  Google Scholar 

  16. IFA. (2012). International Fertilizer Industry Association. FAO. http://www.fertilizer.org

  17. Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Peter, C., Zhu, Z. L., Zhang, F. S., & Tilman, G. D. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 106, 8077–8078.

    CAS  Article  Google Scholar 

  18. Liu, Y. J., Zhang, J., & Ge, Q. (2020). The optimization of wheat yield through adaptive crop management in a changing climate: evidence from China. Journal of the Science of Food and Agriculture

  19. Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257.

    CAS  Article  Google Scholar 

  20. Peter, S. C., Liang, W. L., Stephen, T., Dean, P. H., John, P. D., Tim, M., Neil, I. H., Chen, F., Zvi, H., & Brian, A. K. (2013). Scope for improved eco-efficiency varies among diverse cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 110, 8381–8386.

    Article  Google Scholar 

  21. Rahimizadeh, M., Kashani, A., Zare-Feizabadi, A., Koocheki, A., & Nassiri-Mahallati, M. (2010). Nitrogen use efficiency of wheat as affected by preceding crop, application rate of nitrogen and crop residues. Australian Journal of Crop Science, 4, 363–368.

    CAS  Google Scholar 

  22. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8, e66428.

    CAS  Article  Google Scholar 

  23. Tian, Z. W., Liu, X. X., Gu, S. L., Yu, J. H., Zhang, L., Zhang, W. W., Jiang, D., Cao, W. X., & Dai, T. B. (2018). Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. Journal of Integrative Agriculture, 17, 2648–2661.

    CAS  Article  Google Scholar 

  24. Tilman, D., Balzer, C., Hill, J. L., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Philosophical Transactions of The Royal Society B-biological Sciences, 108, 20260–20264.

    CAS  Google Scholar 

  25. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    CAS  Article  Google Scholar 

  26. Wang, F. H., Kong, L. A., Sayre, K., Li, S. D., Si, J. S., Feng, B., & Zhang, B. (2011). Morphological and yield responses of winter wheat (Triticum aestivum L.) to raised bed planting in northern china. African Journal of Agricultural Research, 6, 2991–2997.

    Google Scholar 

  27. Wang, X. Y., Chun, B. G., & Zhang, Y. L. (2012). Effects of postponing N application on wheat grain yield, protein quality and fertilizer-N use efficiency in a low yield field in Jianghan Plain. Advance Journal of Food Ence & Technology, 4, 357–361.

    Google Scholar 

  28. Wang, W., Lu, J., Ren, T., Li, X., Su, W., & Lu, M. (2012). Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Research, 137, 37–48.

    CAS  Article  Google Scholar 

  29. Zhang, F. S., Cui, Z. L., Fan, M. S., Zhang, W. F., Chen, X. P., & Jiang, R. F. (2011). Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality, 40, 1051–1057.

    CAS  Article  Google Scholar 

  30. Zhang, Z., Zhang, Y. L., Shi, Y., & Yu, Z. W. (2020). Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation. Scientific Reports, 10, 20310.

    CAS  Article  Google Scholar 

  31. Zhao, M., Tian, Y., Zhang, M., Yao, Y., Ao, Y., Yin, B., & Zhu, Z. L. (2015). Nonlinear response of nitric oxide emissions to a nitrogen application gradient: a case study during the wheat season in a Chinese rice-wheat rotation system. Atmospheric Environment, 102, 200–208.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Program of Advanced Discipline Construction in Beijing (Agriculture Green Development), National Key Research and Development Program of China (2017YFD0200107), the Special Fund of Basic Scientific Research of China Agricultural University (2020TC155), and Taishan Scholarship Project of Shandong Province (TS201712082) for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongliang Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Chen, Y., Pan, J. et al. Improved Crop Management Achieved High Wheat Yield and Nitrogen Use Efficiency. Int. J. Plant Prod. (2021). https://doi.org/10.1007/s42106-021-00139-3

Download citation

Keywords

  • High-yield system
  • Cropping systems
  • Current farming practice
  • Management practice
  • Nitrogen use efficiency
  • Optimal nitrogen rate
  • Wheat