Skip to main content

Advertisement

Log in

Interactive Influences of Elevated Atmospheric CO2 and Temperature on Phosphorus Acquisition of Crops and its Availability in Soil: A Review

  • Review
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Global climate change escalates the rise of atmospheric CO2 concentration and temperature, which impact crop production in agricultural ecosystems. As the second important macronutrient, phosphorus (P) fundamentally mediates the crop adaptability to climate change. An overview on previous work on crop P acquisition and soil P dynamics in responses to elevated CO2 and temperature would be critical for further advancing our knowledge on P cycling under climate change and its management to maintain agroecosystem sustainability. This review focuses on the effects of elevated CO2 and temperature on root morphology, root exudation, and associated biochemical properties in the rhizosphere in relevant to crop P acquisition and soil P availability. Studies indicate that elevated CO2 and temperature could increase P uptake of crops, such as rice and soybean when crops are grown within the range of optimal growth temperature. Elevated CO2 and temperature not only alter root exudates and changes the activity of soil enzymes and microbes the in rhizosphere environment, but also directly influence soil chemical and biochemical processes and thus the bioavailability of P. It is worth to focus on P-solubilizing microbial community composition, and microbial function on soil P mobilization in the rhizosphere of crops grown under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abebe, A., Pathak, H., Singh, S. D., Bhatia, A., Harit, R. C., & Kumar, V. (2016). Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in northwest India. Agriculture, Ecosystems and Environment, 218, 66–72.

    CAS  Google Scholar 

  • An, S. R., Niu, X. J., Chen, W. Y., Sheng, H., Lai, S. C., Yang, Z. Q., Gu, X. H., & Zhou, S. Q. (2018). Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO2 in paddy soils. Environmental Pollution, 239, 253–260.

  • Arndal, M. F., Schmidt, I. K., Kongstad, J., Beier, C., & Michelsen, A. (2014). Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Functional Plant Biology, 41, 1–10.

    CAS  Google Scholar 

  • Arndal, M. F., Tolver, A., Larsen, K. S., Beier, C., & Schmidt, I. K. (2017). Fine root growth and vertical distribution in response to elevated CO2, warming and drought in a mixed heathland–grassland. Ecosystems, 601, 1–16.

    Google Scholar 

  • Bai, W. M., Wan, S. Q., Niu, S. L., Liu, W. X., Chen, Q. S., Wang, Q. B., Zhang, W. H., Han, X. G., & Li, L. H. (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Chang Biology, 16, 1306–1316.

    Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    CAS  PubMed  Google Scholar 

  • Benlloch-Gonzalez, M., Bochicchio, R., Berger, J., Bramley, H., & Paltac, J. A. (2014). High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crops Research, 165, 71–79.

    Google Scholar 

  • Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F., & Kennedy, J. J. (2016). El Niño and a record CO2 rise. Nature Climate Change, 6, 806–810.

    CAS  Google Scholar 

  • Bhattacharyya, P., Roy, K. S., Dash, P. K., Neogia, S., Shahid, M., Nayak, A. K., Raja, R., Karthikeyan, S., Balachandar, D., & Rao, K. S. (2014). Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). European Journal of Agronomy, 53, 28–37.

    CAS  Google Scholar 

  • Bi, Q. F., Zheng, B. X., Lin, X. Y., Li, K. J., Liu, X. P., Hao, X. L., Zhang, H., Zhang, J. B., Jaisi, D. P., & Zhu, Y. G. (2018). The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chemical Geology, 483, 56–64.

    CAS  Google Scholar 

  • Bloom, A. J., Burger, M., Asensio, J. S. R., & Cousins, A. B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and arabidopsis. Science, 328, 899–903.

    CAS  PubMed  Google Scholar 

  • Campbell, C. D., & Sage, R. F. (2002). Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin (Lupinus albus L.). Plant, Cell and Environment, 25, 1051–1059.

    Google Scholar 

  • Chaves, M. M., & Pereira, J. S. (1992). Water-stress, CO2 and climate change. Journal of Experimental Botany, 43, 1131–1139.

    Google Scholar 

  • Cure, J. D., Rufty, T. W., & Israel Daniel, W. (1988). Phosphorus stress effects on growth and seed yield responses of nonnodulated soybean to elevated carbon dioxide. Agronomy Journal, 80, 897–902.

    CAS  Google Scholar 

  • Dey, S. K., Chakrabarti, B., Purakayastha, T. J., Prasanna, R., Mittal R., Singh S. D., & Pathak H. (2019). Interplay of phosphorus doses, cyanobacterial inoculation, and elevated carbon dioxide on yield and phosphorus dynamics in cowpea. Environmental Monitoring and Assessment, 191, 223.

  • Dijkstra, F. A., Blumenthal, D., Morgan, J. A., Pendall, E., Carrillo, Y., & Follett, R. F. (2012). Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytologist, 187, 426–437.

    Google Scholar 

  • Drennan, P. M., & Nobel, P. S. (1998). Root growth dependence on soil temperature for Opuntia fcus-indica: influences of air temperature and a doubled CO2 concentration. Functional Ecology, 12, 959–964.

    Google Scholar 

  • Drewry, D. T., Kumar, P., Long, S., Bernacchi, C., Liang, X. Z., & Sivapalan, M. (2010). Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. Journal of Geophysical Research, 115, G04023.

    Google Scholar 

  • Edwards, E. J., McCaffery, S., & Evans, J. R. (2005). Phosphorus status determines biomass response to elevated CO2 in a legume: C4 grass community. Global Change Biology, 11, 1968–1981.

    Google Scholar 

  • Gavito, M. E., Curtis, P. S., Mikkelsen, T. N., & Jakobsen, I. (2001). Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth. Journal of Experimental Botany, 52, 1913–1923.

    CAS  PubMed  Google Scholar 

  • Gentile, R., Dodd, M., Lieffering, M., Brock, S. C., Theobald, P. W., & Newton, P. C. D. (2012). Effects of long-term exposure to enriched CO2 on the nutrient-supplying capacity of a grassland soil. Biology and Fertility of Soils, 48, 362–375.

    Google Scholar 

  • George, T. S., Giles, C. D., Menezes-Blackburn, D., Condron, L. M., Gama-Rodrigues, A. C., Jaisi, D., Lang, F., Neal, A. L., Stutter, M. I., Almeida, D. S., Bol, R., Cabugao, K. G., Celi, L., Cotner, J. B., Feng, G., Goll, D. S., Hallama, M., Krueger, J., Plassard, C., … Haygarth, P. M. (2018). Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities. Plant and Soil, 427, 191–208.

    CAS  Google Scholar 

  • Hao, X. Y., Li, P., Han, X., Norton, R. M., Lam, S. K., Zong, Y. Z., Sun, M., Lin, E., & Gao, Z. Q. (2016). Effects of free-air CO2 enrichment (FACE) on N, P and K uptake of soybean in northern China. Agricultural and Forest Meteorology, 218–219, 261–266.

    Google Scholar 

  • Haygarth, P. M., Hinsinger, P., & Blackburn, D. (2018). Organic phosphorus: potential solutions for phosphorus security. Plant and Soil, 427, 1–3.

    CAS  Google Scholar 

  • Hinsinger, P., Plassard, C., Tang, C. X., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248, 43–59.

    CAS  Google Scholar 

  • Hou, E. Q., Chen, C. R., Luo, Y. Q., Zhou, G. Y., Kuang, Y. W., Zhang, Y. G., Heenan, M., Lu, X. K., & Wen, D. Z. (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344–3356.

    PubMed  Google Scholar 

  • IPCC. (2013). Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 159–218). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jauregui, I., Aroca, R., Garnica, M., Zamarreño, Á. M., García-Mina, J. M., Serret, M. D., Parry, M., Irigoyen, J. J., & Aranjuelo, I. (2015). Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature. Physiologia Plantarum, 155, 338–354.

    CAS  PubMed  Google Scholar 

  • Jena, U. R., Swain, D. K., Hazra, K. K., & Maiti, M. K. (2018). Effect of elevated [CO2] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in eastern India. Journal of the Science of Food and Agriculture, 98, 5841–5852.

    CAS  PubMed  Google Scholar 

  • Jin, J., Armstrong, R., & Tang, C. X. (2017). Long-term impact of elevated CO2 on phosphorus fractions varies in three contrasting cropping soils. Plant and Soil. https://doi.org/10.1007/s11104-017-3344-4

    Article  Google Scholar 

  • Jin, J., Liu, X. B., Wang, G. H., Chen, X. L., Yu, Z. H., & Herbert, S. J. (2013). Effect of phosphorus application on hierarchical lateral root morphology and phosphorus acquisition in soybean. Journal of Plant Nutrition, 36, 1578–1589.

    CAS  Google Scholar 

  • Jin, J., Tang, C., Armstrong, R., & Sale, P. (2012). Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient Vertisol. Plant and Soil, 358, 91–104.

    CAS  Google Scholar 

  • Jin, J., Tang, C. X., Robertson, A., Franks, A. E., Armstrong, R., & Sale, P. (2014). Increased microbial activity contributes to phosphorus immobilization in the rhizosphere of wheat under elevated CO2. Soil Biology and Biochemistry, 75, 292–299.

    CAS  Google Scholar 

  • Jin, J., Tang, C. X., & Sale, P. (2015). The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Annals of Botany, 116, 987–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, A. E., & Poulton, P. R. (2019). Phosphorus in agriculture: A review of results from 175 years of research at Rothamsted UK. Journal of Environmental Quality. https://doi.org/10.2134/jeq2019.02.0078

    Article  PubMed  Google Scholar 

  • Kang, H. J., Kim, S. Y., Fenner, N., & Freeman, C. (2005). Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Science of the Total Environment, 337, 207–212.

    CAS  Google Scholar 

  • Kim, H. Y., Lim, S. S., Kwak, J. H., Lee, D. S., Lee, S. M., Ro, H. M., & Choi, W. J. (2011). Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant and Soil, 342, 59–71.

    CAS  Google Scholar 

  • Lenka, N. K., Lenka, S., Singh, K. K., Kumar, A., Aher, S. B., Yashona, D. S., Dey, P., Agrawal, P. K., Biswas, A. K., & Patra, A. K. (2019). Effect of elevated carbon dioxide on growth, nutrient partitioning, and uptake of major nutrients by soybean under varied nitrogen application levels. Journal of Plant Nutrition and Soil Science, 182, 509–514.

    CAS  Google Scholar 

  • Li, P., Han, X., Zong, Y. Z., Li, H., Lin, E., Han, Y., & Hao, X. (2015). Effects of free-air CO2 enrichment (FACE) on the uptake and utilization of N, P and K in Vigna radiata. Agriculture, Ecosystems and Environment, 202, 120–125.

    CAS  Google Scholar 

  • Li, S. X., Wang, Z. H., & Stewart, B. A. (2011). Differences of some leguminous and nonleguminous crops in utilization of soil phosphorus and responses to phosphate fertilizers. Advances in Agronomy, 110, 126–249.

    Google Scholar 

  • Li, Y. S., Yu, Z. H., Yang, S. C., Wang, G. H., Liu, X. B., Wang, C. Y., Xie, Z. H., & Jin, J. (2019). Impact of elevated CO2 on C: N: P ratio among soybean cultivars. Science of the Total Environment, 694, 133784.

    CAS  Google Scholar 

  • Lie, Z. Y., Lin, W., Huang, W. J., Fang, X., Huang, C. M., Wu, T., Chu, G. W., Liu, S. Z., Meng, Z., Zhou, G. Y., & Liu, J. X. (2019). Warming changes soil N and P supplies in model tropical forests. Biology and Fertility of Soils, 55, 751–763.

    CAS  Google Scholar 

  • Ma, H. L., Zhu, J. G., Liu, G., Xie, Z. B., Wang, Y. L., Yang, L. X., & Zeng, Q. (2007). Availability of soil nitrogen and phosphorus in a typical rice–wheat rotation system under elevated atmospheric [CO2]. Field Crops Research, 100, 44–51.

    Google Scholar 

  • Ma, Z. L., Chang, S. X., Bork, E. W., Steinaker, D. F., Wilson, S. D., White, S. R., & Cahill, J. F., Jr. (2020). Climate change and defoliation interact to affect root length across northern temperate grasslands. Functional Ecology, 00, 1–11.

    Google Scholar 

  • Manoj-Kumar, S. A., Patra, A. K., Chandrakala, J. U., & Manjaiah, K. M. (2012). Effect of elevated CO2 and temperature on phosphorus efficiency of wheat grown in an Inceptisol of subtropical India. Plant Soil and Environment, 58, 230–235.

    CAS  Google Scholar 

  • Manoj-Kumar, S. A., Patra, A. K., Purakayastha, T. J., Maniaiah, K. M., & Rakshit, R. (2011). Elevated CO2 and temperature effects on phosphorus dynamics in rhizosphere of wheat (Triticum aestivum L.) grown in a typic haplustept of subtropical India. Agrochimica, 6, 314–331.

    Google Scholar 

  • McMichael, B. L., & Burke, J. J. (1998). Soil temperature and root growth. HortScience, 33, 947–950.

  • McMichael, B. L., & Quisenberry, J. E. (1993). The impact of the soil environment on the growth of root systems. Environmental and Experimental Botany, 33, 53–61.

    Google Scholar 

  • Mendelsohn, R., & Dinar, A. (2009). Land use and climate change interactions. Annual Reviews of Resource Economic, 1, 309–332.

    Google Scholar 

  • Menezes-Blackburn, D., Giles, C., Darch, T., George, T. S., Blackwell, M., Stutter, M., Shand, C., Lumsdon, D., Cooper, P., Wendler, R., Brown, L., Almeida, D. S., Wearing, C., Zhang, H., & Haygarth, P. M. (2018). Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil, 427, 5–16.

    CAS  PubMed  Google Scholar 

  • Menge, D. N. L., & Field, C. B. (2007). Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, 13, 2582–2591.

    Google Scholar 

  • Pilon, R., Picon-Cochard, C., Bloor, J. M. G., Revaillot, S., Kuhn, E., Falcimagne, R., Balandier, P., & Soussana, J. F. (2013). Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant and Soil, 364, 395–408.

    CAS  Google Scholar 

  • Reddy, V. R., Reddy, K. R., Acock, C. K., & Trent, A. (1994). Carbon dioxide enrichment and temperature effects on root growth in cotton. Biotronics, 23, 47–57.

    Google Scholar 

  • Reich, B. R., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M. H., Naeem, S., & Trost, J. (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922–925.

    CAS  PubMed  Google Scholar 

  • Rui, Y., Wang, Y., Chen, C., Zhou, X. Q., Wang, S. P., Xu, Z. H., Duan, J. C., Kang, X. M., Lu, S. B., & Luo, C. Y. (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73–87.

    CAS  Google Scholar 

  • Sardans, J., Peñuelas, J., & Estiarte, M. (2006). Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant and Soil, 89, 227–238.

    Google Scholar 

  • Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2012). The C: N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33–47.

    Google Scholar 

  • Satapathy, S. S., Swain, D. K., Pasupalak, S., & Bhadoria, P. B. S. (2015). Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India. The Corp Journal, 3, 468–480.

    Google Scholar 

  • Scrase, F. M., Sinclair, F. L., Farrar, J. F., Pavinato, P. S., & Jones, D. L. (2018). Phosphorus acquisition by wheat from organic and inorganic sources labelled with 32P and 33P radioisotopes. Scientia Agricola, 77, 1–8.

    Google Scholar 

  • Secco, D., Wang, C., Shou, H., & Whelan, J. (2012). Phosphate homeostasis in the yeast Saccharomyces Cerevisiae, the key role of the SPX domain-containing proteins. FEBS Letters, 586, 289–295.

    CAS  PubMed  Google Scholar 

  • Seneweera, S. P., & Conroy, J. P. (1997). Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO2 and phosphorus nutrition (Reprinted from Plant nutrition for sustainable food production and environment, 1997). Soil Science and Plant Nutrition, 43, 1131–1136.

    CAS  Google Scholar 

  • Singh, S. K., Reddy, V. R., Fleisher, D. H., & Timlin, D. J. (2014). Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean. Journal of Plant Interactions, 9, 838–849.

    CAS  Google Scholar 

  • Souza, R. C., Solly, E. F., Dawes, M. A., Graf, F., Hagedorn, F., Egli, S., Clement, C. R., Nagy, L., Rixen, C., & Peter, M. (2017). Responses of soil extracellular enzyme activities to experimental warming and CO2 enrichment at the alpine treeline. Plant and Soil. https://doi.org/10.1007/s11104-017-3235-8

    Article  Google Scholar 

  • Stout, L. M., Joshi, S. R., Kana, T. M., & Jaisi, D. P. (2014). Microbial activities and phosphorus cycling: an application of oxygen isotope ratios in phosphate. Geochimica ET Cosmochimica Acta, 138, 101–116.

    CAS  Google Scholar 

  • Thakura, M. P., Real, I. M. D., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M., Rich, R., Worm, K., & Eisenhauer, N. (2019). Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biology and Biochemistry, 135, 184–193.

    Google Scholar 

  • US Geological Survey. (2020). Mineral commodity summaries 2020. Washington: US Geological Survey. https://doi.org/10.3133/mcs2020

    Book  Google Scholar 

  • van Groenigen, J. W., Lubbers, I. M., Vos, H. M. J., Brown, G. G., De Deyn, G. B., & van Groenigen, K. J. (2014). Earthworms increase plant production: a meta-analysis. Scientific Reports, 4, 6365.

    PubMed  PubMed Central  Google Scholar 

  • Van Vuuren, M. M. I., Robinson, D., Fitter, A. H., Chasalow, S. D., Williamson, L., & Raven, J. A. (1997). Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist, 135, 455–465.

    Google Scholar 

  • Wan, S. Q., Norby, R. J., Pregitzer, K. S., Ledford, J., & O’Neill, E. G. (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 162, 437–446.

    Google Scholar 

  • Wang, B., Li, R., Wan, Y., Li, Y., Cai, W. W., Guo, C., Qin, X. B., Song, C. Y., & Wilkes, A. (2021). Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: an OTC field study. Science of The Total Environment, 752, 142071.

    CAS  Google Scholar 

  • Wang, H., Teng, C. Y., Li, H. Y., Sun, X. Z., Jiang, C. L., Lou, L. P., Yue, C. L., & Zhang, Z. J. (2017). Microbial community shifts trigger loss of orthophosphate in wetland soils subjected to experimental warming. Plant and Soil. https://doi.org/10.1007/s11104-017-3538-9

    Article  PubMed  Google Scholar 

  • Wang, J. Q., Li, L. Q., Lam, S. K., Zhang, X. H., Liu, X. Y., & Pan, G. X. (2018). Changes in nutrient uptake and utilization by rice under simulated climate change conditions: A 2-year experiment in a paddy field. Agricultural and Forest Meteorology, 250–251, 202–208.

    Google Scholar 

  • Wang, J. Q., Liu, X. Y., Zhang, X. H., Li, L. Q., Lam, S. K., & Pan, G. X. (2019). Changes in plant C, N and P ratios under elevated [CO2] and canopy warming in a rice-winter wheat rotation system. Scientific Reports, 9, 5424.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J. Q., Liu, X. Y., Zhang, X. H., Smith, P., Li, L. Q., Filley, T. R., Cheng, K., Shen, M. X., He, Y. B., & Pan, G. X. (2016). Size and variability of crop productivity both impacted by CO2 enrichment and warming: A case study of 4 years field experiment in a Chinese paddy. Agriculture, Ecosystems and Environment, 221, 40–49.

    Google Scholar 

  • Wang, Y. Z., Chen, X., Lu, C. Y., Huang, B., & Shi, Y. (2018). Different mechanisms of organic and inorganic phosphorus release from Mollisols induced by low molecular weight organic acids. Canadian Journal of Soil Science, 98, 15–23.

    CAS  Google Scholar 

  • Wei, Y. Q., Wei, Z. M., Cao, Z. Y., Zhao, Y., Zhao, X. Y., Lu, Q., Wang, X. Q., & Zhang, X. (2016). A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. Bioresource Technology, 211, 610–617.

    CAS  PubMed  Google Scholar 

  • Withers, P. J. A., Rodrigues, R., Soltangheisi, A., Carvalho, T. S., Guilherme, L. R. G., Benites, V. M., Gatiboni, L. C., Sousa, D. M. G., Nunes, R. S., Rosolem, C. A., Andreote, F. D., Oliveira, A., Jr., Coutinho, E. L. M., & Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8, 2537.

    PubMed  PubMed Central  Google Scholar 

  • Wu, J. H., & Yu, S. X. (2019). Effect of root exudates of Eucalyptus urophylla and Acacia mearnsii on soil microbes under simulated warming climate conditions. BMC Microbiology, 19, 224.

    PubMed  PubMed Central  Google Scholar 

  • Wu, Y. B., Zhang, J., Deng, Y. C., Wu, J., Wang, S. P., Tang, Y. H., & Cui, X. Y. (2014). Effect of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 215, 1057–1066.

    Google Scholar 

  • Xie, X. J., Li, R. Y., Zhang, Y. H., Shen, S. H., & Bao, Y. X. (2018). Effect of elevated [CO2] on assimilation, allocation of nitrogen and phosphorus by maize (Zea Mays L.). Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2018.1448413.

  • Xu, C. Y., Salih, A., Ghannoum, O., & Tissue, D. T. (2012). Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. Journal of Experimental Botany, 63, 5829–5841.

    CAS  PubMed  Google Scholar 

  • Xu, M. (2015). The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). Journal of Plant Physiology, 184, 89–97.

    CAS  PubMed  Google Scholar 

  • Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101–117.

    CAS  PubMed  Google Scholar 

  • Yang, L. X., Wang, Y. L., Huang, J. Y., Zhu, J. G., Yang, H. J., Liu, G., Liu, H. J., Dong, G. C., & Hu, J. (2007). Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crops Research, 102, 141–150.

    Google Scholar 

  • Yang, X. Y., Chen, X. W., & Yang, X. T. (2019). Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Tillage Research, 187, 85–91.

    Google Scholar 

  • Yu, K. H., Chen, X. M., Pan, G. X., Zhang, X. H., & Chen, C. (2016). Dynamics of soil available phosphorus and its impact factors under simulated climate change in typical farmland of Taihu Lake region, China. Environment Monitoring Assessment, 188, 88.

    Google Scholar 

  • Yuan, Z. Y., & Chen, H. Y. H. (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change. https://doi.org/10.1038/NCLIMATE2549

    Article  Google Scholar 

  • Zhang, N. Y., Guo, R., Song, P., Guo, J. X., & Gao, Y. Z. (2013). Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, northeastern China. Soil Biology Biochemistry, 65, 96–104.

    CAS  Google Scholar 

  • Zhang, X. C., Kuzyakov, Y., Zang, H. D., Dippold, M. A., Shi, L. L., Spielvogel, S., & Razavi, B. S. (2020). Rhizosphere hotspots: Root hairs and warming control microbial efficiency, carbon utilization and energy production. Soil Biology and Biochemistry, 148, 107872.

    CAS  Google Scholar 

  • Zhang, Y., Chen, X. M., Zhang, C. C., Pan, G. X., & Zhang, X. H. (2014). Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region, China. Journal of Plant Nutrient and Soil Science, 177, 343–348.

    CAS  Google Scholar 

  • Zhang, Y. H., Li, R. Y., & Wang, Y. L. (2013). Night-time warming affects N and P dynamics and productivity of winter wheat plants. Canadian Journal of Plant Science, 93, 397–406.

  • Zeng, Q., Liu, B., Gilna, B., Zhang, Y. L., Zhu, C. W., Ma H. L., Pang, J., Chen, G. P., & Zhu, J. G. (2011). Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed (Echinochloa crusgalli L.). Nutrient Cycling in Agroecosystems, 89, 93–104.

  • Zheng, Y. P., Guo, L. L., Hou, R. X., Zhou, H. R., Hao, L. H., Li, F., Cheng, D. J., Peng, Z. P., & Xu, M. (2018). Experimental warming enhances the carbon gain but does not affect the yield of maize (Zea mays L.) in the North China Plain. Flora, 240, 152–163.

    Google Scholar 

  • Zhong, Q. C., Wang, K. Y., Nie, M., Zhang, G. L., Zhang, W. W., Zhu, Y., Fu, Y., Zhang, Q., & Gao, Y. N. (2019). Responses of wetland soil carbon and nutrient pools and microbial activities after 7 years of experimental warming in the Yangtze Estuary. Ecological Engineering, 136, 68–78.

    Google Scholar 

  • Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 612, 522–537.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Key R&D Program of China (2017YFC0504202 / GX18B028; 2017YFD0300300), the National Natural Science Foundation of China [41671274], and Professional Association of the Alliance of International Science Organizations (ANSO-PA-2020-12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Jin or Xiaobing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, Y., Yu, Z. et al. Interactive Influences of Elevated Atmospheric CO2 and Temperature on Phosphorus Acquisition of Crops and its Availability in Soil: A Review. Int. J. Plant Prod. 15, 173–182 (2021). https://doi.org/10.1007/s42106-021-00138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-021-00138-4

Keywords

Navigation