Water Stress is a Key Factor Influencing the Parameter Sensitivity of the WOFOST Model in Different Agro-Meteorological Conditions

Abstract

Sensitivity analysis is helpful for improving the efficiency and accuracy of the calibration of crop growth models. However, parameter sensitivity is still not well understood when combined with different meteorological and production conditions, especially adverse conditions such as water stress. This study simulated the production of winter wheat in four ecological areas in Henan Province, China. The Extend Fourier Amplitude Sensitivity Test algorithm (EFAST) was used for analyzing the sensitivity of 43 crop parameters of the WOrld FOod STudies (WOFOST) model to yield, aboveground biomass, and leaf area index (LAI) with or without water-limited conditions. The results demonstrated that yield and biomass were the objective outputs, and the main limiting factors for the model results were assimilation and dry matter conversion efficiency. Under water-limited conditions, the parameter sensitivity of related extinction coefficient, early wheat leaf area, and root growth increased with increased water stress. With the process variable LAI as the target output, the parameter sensitivity varied at different growth stages, whereas the parameter sensitivity was almost the same under different agro-meteorological conditions. Under water-limited conditions, the parameter sensitivity of wheat early extinction coefficient, maximum root depth, and death rate of the leaves also increased with increased water stress. Therefore, water stress is a key factor affecting parameter sensitivity under different agro-meteorological conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Boogaard, H. L., Wit, A. J. W. d., Roller, J. A. t., & Diepen, C. A. v. (2014). User’s guide for the WOFOST Control Centre 2.1 and WOFOST 7.1.7 crop growth simulation model. In W. U. R. C. Alterra (Ed.). Wageningen.

  2. Confalonieri, R., Bellocchi, G., Tarantola, S., Acutis, M., Donatelli, M., & Genovese, G. (2010). Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters. Environmental Modelling & Software, 25(4), 479–488. https://doi.org/10.1016/j.envsoft.2009.10.005

    Article  Google Scholar 

  3. Confalonieri, R., Bellocchi, G., Bregaglio, S., Donatelli, M., & Acutis, M. (2010a). Comparison of sensitivity analysis techniques: A case study with the rice model WARM. Ecological Modelling, 221(16), 1897–1906. https://doi.org/10.1016/j.ecolmodel.2010.04.021

    Article  Google Scholar 

  4. de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., et al. (2019). 25 years of the WOFOST cropping systems model. Agricultural Systems, 168, 154–167. https://doi.org/10.1016/j.agsy.2018.06.018.

    Article  Google Scholar 

  5. DeJonge, K. C., Ascough, J. C., Ahmadi, M., Andales, A. A., & Arabi, M. (2012). Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments. Ecological Modelling, 231, 113–125. https://doi.org/10.1016/j.ecolmodel.2012.01.024

    Article  Google Scholar 

  6. Frieler, K., Schauberger, B., Arneth, A., Balkovic, J., Chryssanthacopoulos, J., Deryng, D., et al. (2017). Understanding the weather signal in national crop-yield variability. Earths Future, 5(6), 605–616. https://doi.org/10.1002/2016EF000525.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Flénet, F., Kiniry, J. R., Board, J. E., Westgate, M. E., & Reicosky, D. C. (1996). Row Spacing Effects on Light Extinction Coefficients of Corn, Sorghum, Soybean, and Sunflower. Agronomy Journal, 88(2), 185–190.

    Article  Google Scholar 

  8. Gilardelli, C., Confalonieri, R., Cappelli, G. A., & Bellocchi, G. (2018). Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change. Ecological Modelling, 368, 1–14. https://doi.org/10.1016/j.ecolmodel.2017.11.003

    Article  Google Scholar 

  9. Guo, D., Zhao, R., Xing, X., & Ma, X. (2019). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845

    Article  Google Scholar 

  10. Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., & Fereres, E. (2009). AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agronomy Journal, 101(3), 448–459. https://doi.org/10.2134/agronj2008.0218s

    Article  Google Scholar 

  11. Hu, T., & Yin, J. (2014). Wheat ecological cultivation. Science Press. (in Chinese).

  12. Huang, J., Gómez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E., Liang, S., Chen, Z., Xue, J.-H., Wu, Y., Zhao, F., Wang, J., & Xie, X. (2019). Assimilation of remote sensing into crop growth models: Current status and perspectives. Agricultural and Forest Meteorology, 276–277. https://doi.org/10.1016/j.agrformet.2019.06.008

  13. Iizumi, T., Furuya, J., Shen, Z., Kim, W., Okada, M., Fujimori, S., et al. (2017). Responses of crop yield growth to global temperature and socioeconomic changes. Sci Rep, 7(1), 7800. https://doi.org/10.1038/s41598-017-08214-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Jin, H. A., Li, A. N., Wang, J. D., & Bo, Y. C. (2016). Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data. European Journal of Agronomy, 78, 1–12. https://doi.org/10.1016/j.eja.2016.04.007

    Article  Google Scholar 

  15. Jin, X., Li, Z., Nie, C., Xu, X., Feng, H., Guo, W., & Wang, J. (2018). Parameter sensitivity analysis of the AquaCrop model based on extended fourier amplitude sensitivity under different agro-meteorological conditions and application. Field Crops Research, 226, 1-15. https://doi.org/10.1016/j.fcr.2018.07.002

    Article  Google Scholar 

  16. Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., & Wheeler, T. R. (2017). Brief history of agricultural systems modeling. Agricultural Systems, 155, 240–254. https://doi.org/10.1016/j.agsy.2016.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lamboni, M., Makowski, D., Lehuger, S., Gabrielle, B., & Monod, H. (2009). Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, 113(3), 312–320. https://doi.org/10.1016/j.fcr.2009.06.007

    Article  Google Scholar 

  18. Lecerf, R., Ceglar, A., López-Lozano, R., Van Der Velde, M., & Baruth, B. (2019). Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agricultural Systems, 168, 191–202. https://doi.org/10.1016/j.agsy.2018.03.002

    Article  Google Scholar 

  19. Li, Z.-H., Jin, X.-L., Liu, H.-L., Xu, X.-G., & Wang, J.-H. (2019). Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method. Journal of Integrative Agriculture, 18(7), 1547–1561. https://doi.org/10.1016/s2095-3119(18)62046-5

    Article  Google Scholar 

  20. Li, D., Zhang, D., Wang, H., Li, H., Fang, Q., Li, H., & Li, R. (2019). Optimized Planting Density Maintains High Wheat Yield Under Limiting Irrigation in North China Plain. International Journal of Plant Production, 14(1), 107-117. https://doi.org/10.1007/s42106-019-00071-7

    Article  Google Scholar 

  21. Liang, H., Qi, Z., DeJonge, K. C., Hu, K., & Li, B. (2017). Global sensitivity and uncertainty analysis of nitrate leaching and crop yield simulation under different water and nitrogen management practices. Computers and Electronics in Agriculture, 142, 201–210. https://doi.org/10.1016/j.compag.2017.09.010

    Article  Google Scholar 

  22. Liu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651(Pt 1), 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254

    CAS  Article  Google Scholar 

  23. Ma, G., Huang, J., Wu, W., Fan, J., Zou, J., & Wu, S. (2013). Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling, 58(3–4), 634–643. https://doi.org/10.1016/j.mcm.2011.10.038

    Article  Google Scholar 

  24. Makler-Pick, V., Gal, G., Gorfine, M., Hipsey, M. R., & Carmel, Y. (2011). Sensitivity analysis for complex ecological models – A new approach. Environmental Modelling & Software, 26(2), 124–134. https://doi.org/10.1016/j.envsoft.2010.06.010

    Article  Google Scholar 

  25. Morell, F. J., Yang, H. S., Cassman, K. G., Wart, J. V., Elmore, R. W., Licht, M., Coulter, J. A., Ciampitti, I. A., Pittelkow, C. M., Brouder, S. M., Thomison, P., Lauer, J., Graham, C., Massey, R., & Grassini, P. (2016). Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt? Field Crops Research, 192, 1-12. https://doi.org/10.1016/j.fcr.2016.04.004

    Article  Google Scholar 

  26. Richter, G. M., Acutis, M., Trevisiol, P., Latiri, K., & Confalonieri, R. (2010). Sensitivity analysis for a complex crop model applied to Durum wheat in the Mediterranean. European Journal of Agronomy, 32(2), 127–136. https://doi.org/10.1016/j.eja.2009.09.002

    Article  Google Scholar 

  27. Saltelli, A., Tarantola, S., & Chan, P. S. (1999). A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics, 41(1), 39–56.

    Article  Google Scholar 

  28. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global Sensitivity Analysis. John Wiley & Sons, Ltd.

    Google Scholar 

  29. Specka, X., Nendel, C., & Wieland, R. (2019). Temporal Sensitivity Analysis of the MONICA Model: Application of Two Global Approaches to Analyze the Dynamics of Parameter Sensitivity. Agriculture. https://doi.org/10.3390/agriculture9020037

    Article  Google Scholar 

  30. Stella, T., Frasso, N., Negrini, G., Bregaglio, S., Cappelli, G., Acutis, M., & Confalonieri, R. (2014). Model simplification and development via reuse, sensitivity analysis and composition: A case study in crop modelling. Environmental Modelling & Software, 59, 44-58. https://doi.org/10.1016/j.envsoft.2014.05.007

    Article  Google Scholar 

  31. Supit, I., van Diepen, C. A., de Wit, A. J. W., Wolf, J., Kabat, P., Baruth, B., & Ludwig, F. (2012). Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agricultural and Forest Meteorology, 164, 96-111. https://doi.org/10.1016/j.agrformet.2012.05.005

    Article  Google Scholar 

  32. Tang, X., Song, N., Chen, Z., Wang, J., & He, J. (2018). Estimating the potential yield and ETc of winter wheat across Huang-Huai-Hai Plain in the future with the modified DSSAT model. Sci Rep, 8(1), 15370. https://doi.org/10.1038/s41598-018-32980-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Tarantola, S. (2005). SimLab 2.2 Reference Manual. Institute for Systems. In E. C. Informatics and Safety, Joint Research Center, Ispra (Ed.). Italy.

  34. van Ittersum, M. K., Leffelaar, P. A., van Keulen, H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3), 201–234. https://doi.org/10.1016/S1161-0301(02)00106-5

    Article  Google Scholar 

  35. Vanli, O., Ustundag, B. B., Ahmad, I., Hernandez-Ochoa, I. M., & Hoogenboom, G. (2019). Using crop modeling to evaluate the impacts of climate change on wheat in southeastern turkey. Environmental Science and Pollution Research International, 26(28), 29397–29408. https://doi.org/10.1007/s11356-019-06061-6

    CAS  Article  PubMed  Google Scholar 

  36. Vanuytrecht, E., Raes, D., & Willems, P. (2014). Global sensitivity analysis of yield output from the water productivity model. Environmental Modelling & Software, 51, 323–332. https://doi.org/10.1016/j.envsoft.2013.10.017

    Article  Google Scholar 

  37. Varella, H., Guérif, M., & Buis, S. (2010). Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environmental Modelling & Software, 25(3), 310–319. https://doi.org/10.1016/j.envsoft.2009.09.012

    Article  Google Scholar 

  38. Wallach, D., Makowski, D., & Jones, J. W. (2006). Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. Elsevier.

    Google Scholar 

  39. Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143(1–2), 106–122.

    Article  Google Scholar 

  40. Wang, J., Li, X., Lu, L., & Fang, F. (2013). Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental Modelling & Software, 48, 171–182. https://doi.org/10.1016/j.envsoft.2013.06.007

    Article  Google Scholar 

  41. Zhang, D., Li, R., Batchelor, W. D., Ju, H., & Li, Y. (2018). Evaluation of limited irrigation strategies to improve water use efficiency and wheat yield in the North China Plain. PLoS ONE, 13(1), 1–16. https://doi.org/10.1371/journal.pone.0189989

    CAS  Article  Google Scholar 

  42. Zhao, G., Bryan, B. A., & Song, X. (2014). Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modelling, 279, 1–11. https://doi.org/10.1016/j.ecolmodel.2014.02.003

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors of this research would like to thank the graduate student at the College of Agronomy of Agriculture in Henan Agricultural University for their continued support of our research.

Funding

This work was funded by the 13th Five-Year National Key Research and Development Plan of China (2016YFD0300609), the Outstanding Science and Technology Innovation Talents Program of Henan province (184200510008), Modern Agricultural Technology System Project of Henan Province (S2010-01-G04), and the National Key Research and Development Program of China (2017YFD0301105).

Author information

Affiliations

Authors

Contributions

Xin Xu: Conceptualization, Writing—Review & Editing, Methodology. Shuaijie Shen: Writing—Original Draft, Software, Formal analysis. ShupingXiong: Validation, Resources. Xinming Ma: Supervision, Project administration. Zehua Fan: Investigation, Haiyang Han: Visualization.

Corresponding author

Correspondence to Xinming Ma.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Shen, S., Xiong, S. et al. Water Stress is a Key Factor Influencing the Parameter Sensitivity of the WOFOST Model in Different Agro-Meteorological Conditions. Int. J. Plant Prod. (2021). https://doi.org/10.1007/s42106-021-00137-5

Download citation

Keywords

  • Wheat
  • WOFOST model
  • Sensitivity analysis
  • EFAST
  • Water stress