Mitigation of Drought Stress and Yield Improvement in Wheat by Zinc Foliar Spray Relates to Enhanced Water Use Efficiency and Zinc Contents

Abstract

Water and nutrients scarcity are the two major factors for yield reduction in many wheat-producing areas of the world. Drought stress also restricts micronutrient uptake and thus induces micronutrient deficiency. Zinc is the most important micronutrient for abiotic stress tolerance. A field trial was conducted from 2013 to 2015 to study the effect of foliar application of zinc under normal (100% field capacity) and water deficit (60% field capacity) conditions on quantitative and qualitative aspects of wheat (Triticum aestivum L. var. Faisalabad-08). Three Zn levels (0, 0.1%, and 0.2% by using ZnSO4. 7H2O) were foliar sprayed at the vegetative and reproductive stages of wheat. Obtained results revealed that the growth, yield traits, photosynthetic pigments, and WUE were negatively affected by lower water supply. Zinc foliar application did not affect yield under normal irrigation conditions, however, under water deficit foliar application of 0.2% Zn enhanced grain yield to 25–40%. Zinc foliar spray at both vegetative and reproductive stages increased the chlorophyll contents and WUE. Zinc contents of wheat grain were more when 0.1% Zn was sprayed at the reproductive stage or 0.2% Zn at the vegetative stage. Thus, the foliar application of Zn is a promising short-term approach to improve productivity and grain nutrient content in wheat under water deficit stress. Furthermore, the timing and rate of Zn application could be helpful for the efficient use of water for increasing grain yield.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Alloway, B.J. (2008). Zinc in soils and crop nutrition (second edn, pp. 15–35). Brussels, Belgium and Paris, France: International Zinc Association (IZA) and International Fertilizer Association (IFA)

  2. Arough, Y. K., Sharifi, R. S., Sedghi, M., & Barmaki, M. (2016). Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 116–124.

    CAS  Article  Google Scholar 

  3. Bagci, S. A., Ekiz, H., Yilmaz, A., & Cakmak, I. (2007). Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. Journal of Agronomy and Crop Science, 193, 198–206. https://doi.org/10.1111/j.1439-037X.2007.00256.x

    CAS  Article  Google Scholar 

  4. Bhat, F. A., Ganai, B. A., & Uqab, B. (2017). Carbonic anhydrase: Mechanism, structure and importance in higher plants. Asian Journal of Plant Science Research, 7(3), 17–23.

    CAS  Google Scholar 

  5. Boonchuay, P., Cakmak, I., Rerkasem, B., & Prom-U-Thai, C. (2013). Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Science and Plant Nutrition, 59, 180–188. https://doi.org/10.1080/00380768.2013.763382

    CAS  Article  Google Scholar 

  6. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302, 1–17. https://doi.org/10.1007/s11104-007-9466-3

    CAS  Article  Google Scholar 

  7. Cakmak, I., Kalayci, M., Kaya, Y., Torun, A. A., Aydin, N., Wang, Y., Arisoy, Z., Erdem, H., Yazici, A., Gokmen, O., Ozturk, L., & Horst, W. J. (2010). Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 58, 9092–9102. https://doi.org/10.1021/jf101197h

    CAS  Article  PubMed  Google Scholar 

  8. Cakmak, I., Ozkan, H., Braun, H. J., Welch, R. M., & Romheld, V. (2000). Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food and Nutrition Bulletin, 21, 401–403. https://doi.org/10.1177/156482650002100411

    Article  Google Scholar 

  9. Daneshbakhsh, B., & Hossein, A. (2013). Effect of zinc nutrition on salinity-induced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiologiae Plantarum, 35(3), 881–889. https://doi.org/10.1007/s11738-012-1131-7

    CAS  Article  Google Scholar 

  10. El-fouly, M. M., Mobarak, Z. M., & Salama, Z. A. (2011). Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L. African Journal of Plant Science, 5, 314–322.

    CAS  Google Scholar 

  11. Farooq, M., Hussain, M., & Siddique, K. H. M. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33, 331–349. https://doi.org/10.1080/07352689.2014.875291

    CAS  Article  Google Scholar 

  12. Fatemi, H., Zaghdoud, C., Nortes, P. A., Carvajal, M., & Martínez-Ballesta, M. D. C. (2020). Differential aquaporin response to distinct effects of two Zn concentrations after foliar application in pak choi (Brassica rapa L.) plants. Agronomy, 10(3), 450.

    CAS  Article  Google Scholar 

  13. Gomez-Coronado, F., Poblaciones, M. J., Almeida, A. S., & Cakmak, I. (2016). Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant and Soil, 401(1–2), 331–346.

    CAS  Article  Google Scholar 

  14. Hammad, S. A. R., & Ali, O. A. M. (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59, 133–145. https://doi.org/10.1016/j.aoas.2014.06.018

    Article  Google Scholar 

  15. Haslett, B. S., Reid, R. J., & Rengel, Z. (2001). Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Annals of Botany, 87, 379–386. https://doi.org/10.1006/anbo.2000.1349

    CAS  Article  Google Scholar 

  16. Hassan, M. U., Aamer, M., Chattha, M. U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396.

    CAS  Article  Google Scholar 

  17. Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541–549. https://doi.org/10.1002/jpln.200420516

    CAS  Article  Google Scholar 

  18. Hussain, G., & Al-Jaloud, A.A. (1995). Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia. Agricultural Water Management, 27(2), 143–153.

    Article  Google Scholar 

  19. Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., & Dashti, S. (2016). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica, 107, 265–276. https://doi.org/10.14720/aas.2016.107.2.01

    Article  Google Scholar 

  20. Joy, E. J., Ahmad, W., Zia, M. H., Kumssa, D. B., Young, S. D., Ander, E. L., Watts, M. J., Stein, A. J., & Broadley, M. R. (2017). Valuing increased zinc (Zn) fertiliser-use in Pakistan. Plant and Soil, 411(1–2), 139–150.

    CAS  Article  Google Scholar 

  21. Karim, M. R., Zhang, Y. Q., Zhao, R. R., Chen, X. P., Zhang, F. S., & Zou, C. Q. (2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. Journal of Plant Nutrition and Soil Science, 175, 142–151. https://doi.org/10.1002/jpln.201100141

    CAS  Article  Google Scholar 

  22. Kaya, C., & Higgs, D. (2002). Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. Scientia Horticulturae, 93, 53–64. https://doi.org/10.1016/S0304-4238(01)00310-7

    CAS  Article  Google Scholar 

  23. Khan, H. R., McDonald, G. K., & Rengel, Z. (2003). Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant and Soil, 249, 389–400. https://doi.org/10.1023/A:1022808323744

    CAS  Article  Google Scholar 

  24. Khurana, N., & Chatterjee, C. (2001). Influence of variable zinc on yield, oil content, and physiology of sunflower. Communications in Soil Science and Plant Analysis, 32, 3023–3030.

    CAS  Article  Google Scholar 

  25. Kutman, U. B., Yildiz, B., & Cakmak, I. (2011). Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science, 53, 118–125. https://doi.org/10.1016/j.jcs.2010.10.006

    CAS  Article  Google Scholar 

  26. Liang, Y. F., Khan, S., Ren, A. X., Lin, W., Anwar, S., Sun, M., & Gao, Z. Q. (2019). Subsoiling and sowing time influence soil water content, nitrogen translocation and yield of dryland winter wheat. Agronomy, 9(1), 37. https://doi.org/10.3390/agronomy9010037

    Article  Google Scholar 

  27. Lowther, J. R. (1980). Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of Pinus radiata needles. Communications in Soil Science and Plant Analysis, 11(2), 175–188.

    CAS  Article  Google Scholar 

  28. Ma, D., Sun, D., Wang, C., Ding, H., Qin, H., Hou, J., Huang, X., Xie, Y., & Guo, T. (2017). Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science, 8, 1–12. https://doi.org/10.3389/fpls.2017.00860

    Article  Google Scholar 

  29. Mirzapour, M. H., & Khoshgoftar, A. H. (2006). Zinc application effects on yield and seed oil content of sunflower grown on a saline calcareous soil. Journal of Plant Nutrition, 29, 1719–1727. https://doi.org/10.1080/01904160600897430

    CAS  Article  Google Scholar 

  30. Mousavi, S. R. (2011). Zinc in crop production and interaction with phosphorus. Australian Journal of Basic and Applied Sciences, 5, 1503–1509.

    CAS  Google Scholar 

  31. Nawaz, F., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Shabbir, R. N., & Bukhari, M. A. (2015). Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chemistry, 175, 350–357. https://doi.org/10.1016/j.foodchem.2014.11.147

    CAS  Article  PubMed  Google Scholar 

  32. Pahlavan-Rad, M. R., & Pessarakli, M. (2009). Response of wheat plants to zinc, iron, and manganese applications and uptake and concentration of zinc, iron, and manganese in wheat grains. Communications in Soil Science and Plant Analysis, 40, 1322–1332. https://doi.org/10.1080/00103620902761262

    CAS  Article  Google Scholar 

  33. Peleg, Z., Saranga, Y., Yazici, A., Fahima, T., Ozturk, L., & Cakmak, I. (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306, 57–67. https://doi.org/10.1007/s11104-007-9417-z

    CAS  Article  Google Scholar 

  34. Ram, S., & Govindan, V. (2020). Improving wheat nutritional quality through biofortification. Wheat quality for improving processing and human health (pp. 205–224). Springer.

    Google Scholar 

  35. Ramzan, Y., Hafeez, M. B., Khan, S., Nadeem, M., Batool, S., & Ahmad, J. (2020). Biofortification with zinc and iron improves the grain quality and yield of wheat crop. International Journal of Plant Production, 14, 510.

    Article  Google Scholar 

  36. Riesen, O., & Feller, U. (2005). Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. Journal of Plant Nutrition, 28, 421–430. https://doi.org/10.1081/PLN-200049153

    CAS  Article  Google Scholar 

  37. Saadati, S., Moallemi, N., Mortazavi, S. M. H., & Seyyednejad, S. M. (2013). Effects of zinc and boron foliar application on soluble carbohydrate and oil contents of three olive cultivars during fruit ripening. Scientia Horticulturae, 164, 30–34. https://doi.org/10.1016/j.scienta.2013.08.033

    CAS  Article  Google Scholar 

  38. Saeidnejad, A. H., Kafi, M., & Pessarakli, M. (2016). Interactive effects of salinity stress and Zn availability on physiological properties, antioxidant activity, and micronutrients content of wheat (Triticum aestivum) plants. Communications in Soil Science and Plant Analysis, 47, 1048–1057. https://doi.org/10.1080/00103624.2016.1165831

    CAS  Article  Google Scholar 

  39. Shahbandeh, M. (2021). Global wheat cinsumption. https://www.statista.com/statistics/1094056/total-global-rice-consumption/. Accessed 10 Feb 2021

  40. Shayanmehr, S., Henneberry, R. S., Sabouni, S. M., & Foroushani, S. N. (2020). Drought, climate change, and dryland wheat yield response: An econometric approach. International Journal of Environmental Research and Public Health, 17(14), 5264.

    Article  Google Scholar 

  41. Shi, R., Zhang, Y., Chen, X., Sun, Q., Zhang, F., Römheld, V., & Zou, C. (2010). Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51, 165–170. https://doi.org/10.1016/j.jcs.2009.11.008

    CAS  Article  Google Scholar 

  42. Singh, S., Gupta, A. K., & Kaur, N. (2012). Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. The Scientific World Journal. https://doi.org/10.1100/2012/485751

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, J., Mao, H., Zhao, H., Huang, D., & Wang, Z. (2012). Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field Crops Research, 135, 89–96. https://doi.org/10.1016/j.fcr.2012.07.010

    Article  Google Scholar 

  44. Waraich, E. A., Ahmad, R., Yaseen Ashraf, M., Saifullah, S., & Ahmad, M. (2011). Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica Section B, 61, 291–304. https://doi.org/10.1080/09064710.2010.491954

    CAS  Article  Google Scholar 

  45. Waters, B. M., & Sankaran, R. P. (2011). Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Science, 180, 562–574. https://doi.org/10.1016/j.plantsci.2010.12.003

    CAS  Article  PubMed  Google Scholar 

  46. Waters, B. M., Uauy, C., Dubcovsky, J., & Grusak, M. A. (2009). Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 60, 4263–4274. https://doi.org/10.1093/jxb/erp257

    CAS  Article  PubMed  Google Scholar 

  47. Xia, H., Kong, W., Wang, L., Xue, Y., Liu, W., Zhang, C., Yang, S., & Li, C. (2019). Foliar Zn spraying simultaneously improved concentrations and bioavailability of Zn and Fe in maize grains irrespective of foliar sucrose supply. Agronomy, 9(7), 386.

    CAS  Article  Google Scholar 

  48. Xue, L., Khan, S., Sun, M., Anwar, S., Ren, A., Gao, Z., Lin, W., Xue, J., Yang, Z., & Deng, Y. (2019). Effects of tillage practices on water consumption and grain yield of dryland winter wheat under different precipitation distribution in the loess plateau of China. Soil and Tillage Research, 191, 66–74.

    Article  Google Scholar 

  49. Xue, Y. F., Yue, S. C., Zhang, Y. Q., Cui, Z. L., Chen, X. P., Yang, F. C., Cakmak, I., McGrath, S. P., Zhang, F. S., & Zou, C. Q. (2012). Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant and Soil, 361, 153–163. https://doi.org/10.1080/01904169709365267

    CAS  Article  Google Scholar 

  50. Zeidan, M. S., Mohamed, M. F., & Hamouda, H. A. (2010). Effect of foliar fertilization of Fe, Mn and Zn on wheat yield and quality in low sandy soils fertility. World Journal of Agricultural Sciences, 6, 696–699.

    CAS  Google Scholar 

  51. Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., Lu, X., Zhang, M., & Jin, J. (2018). Effect of drought on agronomic traits of rice and wheat: A meta-analysis. International Journal of Environmental Research and Public Health, 15(5), 839.

    Article  Google Scholar 

  52. Zhang, Y., Shi, R., Rezaul, K. M., Zhang, F., & Zou, C. (2010). Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. Journal of Agricultural and Food Chemistry, 58, 12268–12274. https://doi.org/10.1021/jf103039k

    CAS  Article  PubMed  Google Scholar 

  53. Zhao, A., Tian, X., Cao, Y., Lu, X., & Liu, T. (2014). Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils. Journal of the Science of Food and Agriculture, 94, 2016–2022.

    CAS  Article  Google Scholar 

  54. Zhao, T., & Dai, A. (2017). Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Climate Change, 144, 535–548. https://doi.org/10.1007/s10584-016-1742-x

    Article  Google Scholar 

Download references

Funding

This work received no external funding.

Author information

Affiliations

Authors

Contributions

R.B, ZUN: Data curation, Formal analysis and Investigation; S.A: Writing-Original draft preparation; S.K: Methodology; A.M: Resources, conceptualization; R.K: Software; A.P, R.K: Writing-review and editing.

Corresponding author

Correspondence to Sumera Anwar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anwar, S., Khalilzadeh, R., Khan, S. et al. Mitigation of Drought Stress and Yield Improvement in Wheat by Zinc Foliar Spray Relates to Enhanced Water Use Efficiency and Zinc Contents. Int. J. Plant Prod. (2021). https://doi.org/10.1007/s42106-021-00136-6

Download citation

Keywords

  • Grain yield
  • Triticum aestivum L.
  • Water stress
  • WUE
  • Zinc fertilizer