Yield Gap Assessment in Rice-Grown Fields Using CPA and BLA Approaches in Northern Iran

Abstract

Narrowing the yield gaps is one of the major concerns in developing countries. Closing yield gap to obtain attainable yield is a viable option for providing information regarding the reason of yield loss. Hence, accurate estimation of the yield gap has many practical applications for enhancing production of crops. This research was conducted for assessing the yield gap of rice-grown fields using boundary-line analysis (BLA) and comparative performance analysis (CPA) methods. Collection of 100 rice-grown fields data were done in Sari region, Mazandaran province, one of the major rice production areas in northern Iran from 2015 to 2016. All paddy field management operations from preparation of nursery to harvest of yield has been recorded for local rice varieties. The CPA model calculate the potential yield and factors causing yield gap. In contrast, BLA model were fitted to the edge of data cloud of rice yield versus field managing variables from monitoring. Analysis of data in 100 monitored paddy fields demonstrated that rice yield varied from 3100 to 5430 kg ha−1. Prediction of potential yield for CPA and BLA methods were 5703 and 5369 kg ha−1, respectively. The yield gaps calculated by CPA and BLA methods in 1212 and 881 kg ha−1, respectively. In the CPA, the share of yield gap for variables entered in the model were 5% for cover crop of canola, 18% for legumes before rice cultivation, 4% for seed disinfection, 10% for seeding date in nursery, 11% for seedling age, 11% for seedling growth stage for transplanting, 5% for mechanized transplanting, 4% for fertilizer top-dressing, 27% for number of top-dressing and 6% for foliar application of nutrients. In the BLA, an average attainable yield, based on the optimum level of the 12 studied variables, was 5369 kg ha−1 with an 881 kg ha−1 yield gap. Regarding the fact that calculated yield in CPA and BLA, it has been stated that this potential yield is attainable. CPA and BLA are cheap and simple tools that, without the need for expensive experimentation, is able to detect yield gap and its causes in a district. Therefore, these methods can be used effectively in developing countries where the highest yield gaps exist.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abeledo, L. G., Savin, R., & Slafer, G. A. (2008). Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal of Agronomy, 28, 541–550.

    Article  Google Scholar 

  2. Aggarwal, P. K., & Kalra, N. (1994). Simulating the effect of climatic factors, genotype, and water and nitrogen availability on productivity of wheat: II. Climatically potential yields and optimal management strategies. Field Crops Research, 38, 93–103.

    Article  Google Scholar 

  3. Alizadeh Dehkordi, P., Nehbandani, A., Hasanpour-bourkheili, S., & Kamkar, B. (2020). Yield gap analysis using remote sensing and modelling approaches: Wheat in the northwest of Iran. International Journal of Plant Production. https://doi.org/10.1007/s42106-020-00095-4.

    Article  Google Scholar 

  4. Anderson, W., Johansen, C., Kadambot, H., & Siddique, M. (2016). Addressing the yield gap in rainfed crops: A review. Agronomy for Sustainable Development, 36, 18.

    CAS  Article  Google Scholar 

  5. Banneheka, B., Dhanushika, M., Wijesuriya, W., & Herath, K. (2013). A linear programming approach to fitting an upper quadratic boundary line to natural rubber data. Journal of the National Science Foundation of Sri Lanka, 41, 13–20.

    Article  Google Scholar 

  6. Beza, E., Silva, J. V., Kooistra, L., & Reidsma, P. (2017). Review of yield gap explaining factors and opportunities for alternative data collection approaches. European Journal of Agronomy, 82, 206–222.

    Article  Google Scholar 

  7. Chapagain, T., & Good, A. (2015). Yield and production gaps in rainfed wheat, barley, and canola in Alberta. Frontiers in Plant Science, 6, 990.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Dastan, S., Ghareyazie, B., & Teixeira da Silva, J. A. (2020). Selection of ideotype to increase yield potential of GM and non-GM rice cultivars. Plant Science. https://doi.org/10.1016/j.plantsci.2020.110519.

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Bie, C. A. J. M. (2000). Yield gap studies through comparative performance analysis of agro-ecosystems (p. 234). Enschede: International Institute for Aerospace and Earth Science (ITC).

    Google Scholar 

  10. Espe, M. B., Cassman, K. G., Yang, H., Guilpart, N., Grassini, P., Wart, J. V., et al. (2016). Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Research, 196, 276–283.

    Article  Google Scholar 

  11. Fedoroff, N. V. (2015). Food in a future of 10 billion. Agriculture and Food Science, 4, 11–21.

    Google Scholar 

  12. Fischer, R. A. (2015). Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crops Research, 182, 9–18.

    Article  Google Scholar 

  13. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., et al. (2011). Solutions for a cultivated planet. Nature, 478(7639), 337–342.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. French, R. J., & Schultz, J. E. (1984). Water use efficiency of wheat in a Mediterranean-type environment. II. some limitations to efficiency. Australian Journal of Agricultural Research, 35, 765–775.

    Article  Google Scholar 

  15. Gaydon, D. S., Balwinder-Singh, B. E., Wang, E., Poulton, P. L., Ahmad, B., Ahmed, F., et al. (2017). Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204, 52–75.

    Article  Google Scholar 

  16. Gorjizad, A., Dastan, S., Soltani, A., & Ajam Norouzi, H. (2019). Large scale assessment of the production process and rice yield gap analysis by comparative performance analysis and boundary-line analysis methods. Italian Journal of Agronomy, 14(1174), 123–131.

    Article  Google Scholar 

  17. Grassini, P., Hall, A. J., & Mercau, J. L. (2009). Benchmarking sunflower water productivity in semiarid environments. Field Crops Research, 110, 251–262.

    Article  Google Scholar 

  18. Guilpart, N., Grassini, P., Sadras, V. O., Timsina, J., & Cassman, K. G. (2017). Estimating yield gaps at the cropping system level. Field Crops Research, 206, 21–32.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Haghshenas, H., Soltani, A., Ghanbari, A., Ajamnoroozi, H., & Dastan, S. (2019). Selecting the ideotype of improved rice cultivars using multiple regression and multivariate models. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2019.1658866.

    Article  Google Scholar 

  20. Hajjarpoor, A., Soltani, A., Zeinali, E., Kashiri, H., Aynehband, A., & Vadez, V. (2018a). Using boundary line analysis to assess the on-farm crop yield gap of wheat. Field Crops Research, 225, 64–73.

    Article  Google Scholar 

  21. Hajjarpoor, A., Vadez, V., Soltani, A., Gaur, P., Whitbread, A., Suresh Babu, D., et al. (2018b). Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Research, 223, 93–104.

    Article  Google Scholar 

  22. Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics, 32, 1–49.

    Article  Google Scholar 

  23. Huang, M., Zou, Y. B., Jiang, P., Xia, B., Md, I., & Ao, H. J. (2011). Relationship between grain yield and yield components in super hybrid rice. Agricultural Science in China, 10, 1537–1544.

    Article  Google Scholar 

  24. Huang, X., Wang, L., Yang, L., & Kravchenko, A. N. (2008). Management effects on relationships of crop yields with topography represented by wetness index and precipitation. Agronomy Journal, 100, 1463–1471.

    Article  Google Scholar 

  25. Kitchen, N. R., Drummond, S. T., Lund, E. D., Sudduth, K. A., & Buchleiter, G. W. (2003). Soil electrical conductivity and topography related to yield for three contrasting soil–crop systems. Agronomy Journal, 95, 483–495.

    Article  Google Scholar 

  26. Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Global Ecology and Biogeography, 19, 769–782.

    Article  Google Scholar 

  27. Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179–204.

    Article  Google Scholar 

  28. Makowski, D., Dore, T., & Monod, H. (2007). A new method to analyze relationships between yield components with boundary lines. Agronomy for Sustainable Development, 27, 119–128.

    Article  Google Scholar 

  29. Menendez, F. J., & Satorre, E. H. (2007). Evaluating wheat potential yield determination in the Argentine Pampas. Agricultural Systems, 95, 1–10.

    Article  Google Scholar 

  30. Milne, A. E., Ferguson, R. B., & Lark, R. M. (2006). Estimating a boundary line model for a biological response by maximum likelihood. Annual of Applied Biology, 149, 223–234.

    Article  Google Scholar 

  31. Ministry of Jihad-e-Agriculture of Iran. 2016. Annual agricultural statics. http://www.maj.ir

  32. Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Nalley, L., Tack, J., Barkley, A., Jagadish, K., & Brye, K. (2016). Quantifying the agronomic and economic performance of hybrid and conventional rice varieties. Agronomy Journal, 108(4), 1514–1523.

    CAS  Article  Google Scholar 

  34. Nezamzadeh, E., Soltani, A., Dastan, S., & Ajamnoroozie, H. (2020). Factors causing yield gap in rape seed production in the eastern of Mazandaran province, Iran. Italian Journal of Agronomy, 15(1280), 10–19.

    Article  Google Scholar 

  35. Nhamo, N., Jonne, R., Negussie, Z., Godswill, M., & Ashura, L. K. (2014). Narrowing the rice yield gap in East and Southern Africa: Using and adapting existing technologies. Agricultural Systems, 131, 45–55.

    Article  Google Scholar 

  36. Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Sciences, 144, 31–43.

    Google Scholar 

  37. Patrignani, A., Lollato, R. P., Ochsner, T. E., Godsey, C. B., & Edwards, J. T. (2014). Yield gap and production gap of rainfed winter wheat in the southern Great Plains. Agronomy Journal, 106, 1329–1339.

    Article  Google Scholar 

  38. Pazouki, T. M., Ajam Noroui, H., Ghanbari Malidareh, A., Dadashi, M. R., & Dastan, S. (2017). Energy and CO2 emission assessment of wheat (Triticum aestivum L.) production scenarios in central areas of Mazandaran province, Iran. Applied Ecology and Environmental Research, 15(4), 143–161.

    Article  Google Scholar 

  39. Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress in ideotype breeding to increase yield potential in rice. Field Crops Research, 108, 32–38.

    Article  Google Scholar 

  40. Peng, S., Tang, Q., & Zou, Y. (2009). Current status and challenges of rice production in China. Plant Production Sciences, 12, 3–8.

    Article  Google Scholar 

  41. Pradhan, R. (2004). The effect of land and management aspects on maize yield (p. 52). Enschede: International Institute for Geo-Information Science and Earth Observation Enschede (ITC).

    Google Scholar 

  42. Riffel, J. D. 2012. Yield response and economic impact of variable-rate nitrogen applications in grain sorghum. M.Sc. Thesis of Kansas State University. 115 p. http://hdl.handle.net/2097/13710.

  43. SAS. 2008. SAS/STAT software, version 9.2 of the SAS system for windows. Copyright (c) 2002–2008 by SAS Institute Inc., Cary, NC, USA.

  44. Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to disease and their implications for global production losses and food security. Food Security, 4(4), 519–537.

    Article  Google Scholar 

  45. Schmidt, U., Thoni, H., & Kaupenjohann, M. (2000). Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutrient Cycling in Agroecosystems, 57, 119–129.

    CAS  Article  Google Scholar 

  46. Schnug, E., Heym, J., & Achwan, F. (1996). Establishing critical values for soil and plant analysis by means of the boundary line development system (bolides). Communication in Soil Science and Plant Analysis, 27, 2739–2748.

    CAS  Article  Google Scholar 

  47. Shatar, T. M., & Mcbratney, A. B. (2004). Boundary-line analysis of field-scale yield response to soil properties. Journal of Agricultural Science (JAS), 142, 553–560.

    Article  Google Scholar 

  48. Sheehy, J. E., & Mitchell, P. I. (2015). Calculating maximum theoretical yield in rice. Field Crops Research, 182, 68–75.

    Article  Google Scholar 

  49. Shi-Yuan, Z., Xiao-hu, Z., Xiao-lei, Q., Liang, T., Yan, Z., Wei-Xing, C., & Lei-lei, L. (2017). Quantifying the spatial variation, the potential productivity and yield gap of winter wheat in China. Journal of Integrative Agriculture, 16(4), 845–857.

    Article  Google Scholar 

  50. Silva, J. V., Reidsma, P., Laborte, A. G., & van Ittersum, M. K. (2017). Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modeling. European Journal of Agronomy, 82, 223–241.

    Article  Google Scholar 

  51. Smith, P. (2013). Delivering food security without increasing pressure on land. Global Food Security, 2, 18–23.

    Article  Google Scholar 

  52. Soltani, A., Hajjarpoor, A., & Vadez, V. (2016). Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research, 185, 21–30.

    Article  Google Scholar 

  53. Soltani, A., Maleki, M. H. M., & Zeinali, E. (2014). Optimal crop management can reduce energy use and greenhouse gases emissions in rainfed canola production. International Journal of Plant Production, 8, 587–604.

    CAS  Google Scholar 

  54. Soltani, A., Rajabi, M. H., Zeinali, E., & Soltani, E. (2013). Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy, 50, 54–61.

    CAS  Article  Google Scholar 

  55. Tasistro, A. (2012). Use of boundary lines in field diagnosis and research for Mexican farmers. Better Crops with Plant Food, 96, 11–13.

    Google Scholar 

  56. Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90.

    Article  Google Scholar 

  57. Tittonell, P., Shepherd, K., Vanlauwe, B., & Giller, K. (2008). Unraveling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya: An application of classification and regression tree analysis. Agriculture, Ecosystems and Environment, 123, 137–150.

    Article  Google Scholar 

  58. van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance: A review. Field Crops Research, 143, 4–17.

    Article  Google Scholar 

  59. van Wart, J., Kersebaum, K. C., Peng, S., Milner, M., & Cassman, K. G. (2013). Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34–43.

    Article  Google Scholar 

  60. Wang, N., Jassogne, L., van Asten, P. J. A., Mukasa, D., Wanyama, I., Kagezi, G., & Giller, K. E. (2015). Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. European Journal of Agronomy, 63, 1–11.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Salman Dastan.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yousefian, M., Soltani, A., Dastan, S. et al. Yield Gap Assessment in Rice-Grown Fields Using CPA and BLA Approaches in Northern Iran. Int. J. Plant Prod. (2021). https://doi.org/10.1007/s42106-020-00128-y

Download citation

Keywords

  • Boundary-line function
  • Food security
  • Potential yield
  • Regression model