The Use of Stability Statistics to Analyze Genotype × Environments Interaction in Rainfed Wheat Under Diverse Agroecosystems

Abstract

Due to environmental diversity, genotype performance for yield and stability is essential for crop improvement. The GGE biplot, and 11 parametric and non-parametric stability models were employed to evaluate 23 wheat (Triticum aestivum L.) genotypes, tested in randomized complete block trials across two contrasting fields (sandy and loamy) and four seasons. The sandy field yielded half compared to the loamy field, reflecting relatively low- and high-input environments, respectively. Analysis of variance showed significant differences between genotypes for grain yield and crossover genotype ranking across environments; the loamy field was more representative of an overall genotype performance. The stability models resulted in diverse genotype classification and were distinguished into two separate groups. The first group comprised measures that consider both G and GE focusing on the agronomic aspect of stability and high-yielding ability. The second group included tools that consider only GE focusing on the static aspect of stability and characterized most of the high-performing genotypes as undesirable. The GGE biplot highlighted genotypes that were characterized as either desirable or undesirable following most models in both groups. Therefore, the GGE biplot presented an effective statistical tool for assessing wheat genotypes in terms of general and specific adaptation without overlooking yielding ability. It is suggested the preference of favorable experimental conditions and application of the GGE model to identify genotypes that are more promising for stable performance across wide agroecosystems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akcura, M., Kaya, Y., Taner, S., & Ayranci, R. (2006). Parametric stability analyses for grain yield of durum wheat. Plant Soil and Environment. https://doi.org/10.17221/3438-PSE.

    Article  Google Scholar 

  2. Al-Naggar, A. M. M., Abd El-Salam, R. M., Asran, M. R., & Yaseen, W. Y. S. (2018). Yield adaptability and stability of grain sorghum genotypes across different environments in Egypt using AMMI and GGE-biplot models. Annual Research and Review in Biology. https://doi.org/10.9734/ARRB/2018/39491.

    Article  Google Scholar 

  3. Anderson, W. K. (2010). Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research. https://doi.org/10.1016/j.fcr.2009.11.016.

    Article  Google Scholar 

  4. Baker, R. J. (1988). Tests for crossover genotype-environment interactions. Canadian Journal of Plant Science. https://doi.org/10.4141/cjps88-051.

    Article  Google Scholar 

  5. Baxevanos, D., Goulas, C., Tzortzios, S., & Mavromatis, A. (2008). Interrelationship among and repeatability of seven stability indices estimated from commercial cotton (Gossypium hirsutum L.) variety evaluation trials in three Mediterranean countries. Euphytica. https://doi.org/10.1007/s10681-007-9586-0.

    Article  Google Scholar 

  6. Becker, H. C., & Leon, J. (1988). Stability analysis in plant breeding. Plant Breeding. https://doi.org/10.1111/j.1439-0523.1988.tb00261.x.

    Article  Google Scholar 

  7. Bocianowski, J., Księżak, J., & Nowosad, K. (2019a). Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica. https://doi.org/10.1007/s10681-019-2515-1.

    Article  Google Scholar 

  8. Bocianowski, J., Nowosad, K., & Tomkowiak, A. (2019b). Genotype –environment interaction for seed yield of maize hybrids and lines using the AMMI model. Maydica, 64 ~ M 13.

  9. Cambouris, A. N., Nolin, M. C., Zebarth, B. J., & Laverdière, M. R. (2006). Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. American Journal of Potato Research. https://doi.org/10.1007/BF02872015.

    Article  Google Scholar 

  10. Cisternas, I., Velásquez, I., Caro, A., & Rodríguez, A. (2020). Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2020.105626.

    Article  Google Scholar 

  11. Döring, T. F., & Reckling, M. (2018). Detecting global trends of cereal yield stability by adjusting the coefficient of variation. European Journal of Agronomy. https://doi.org/10.1016/j.eja.2018.06.007.

    Article  Google Scholar 

  12. Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science. https://doi.org/10.2135/cropsci1966.0011183X000600010011x.

    Article  Google Scholar 

  13. Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agriculturalo Research. https://doi.org/10.1071/AR9630742.

    Article  Google Scholar 

  14. Fox, P. N., Skovmand, B., Thompson, B. K., Braun, H. J., & Cormier, R. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica. https://doi.org/10.1007/BF00040364.

    Article  Google Scholar 

  15. Francis, T. R., & Kannenberg, L. W. (1978). Yield stability studied in short-season maize: I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science. https://doi.org/10.4141/cjps78-157.

    Article  Google Scholar 

  16. Gauch, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 88, 705–715.

    Article  Google Scholar 

  17. Gupta, P. K., Langridge, P., & Mir, R. R. (2010). Marker-assisted wheat breeding: Present status and future possibilities. Molecular Breeding. https://doi.org/10.1007/s11032-009-9359-7.

    Article  Google Scholar 

  18. He, Y., Hou, L., Wang, H., Hu, K., & McConkey, B. (2014). A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition. Scientific Reports. https://doi.org/10.1038/srep05736.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hühn, M., & Leon, J. (1995). Non-parametric analysis of cultivar performance trials: Experimental results and comparison of different procedures based on ranks. Agronomy Journal. https://doi.org/10.2134/agronj1995.00021962008700040004x.

    Article  Google Scholar 

  20. Jalaluddin, M. D., & Harrison, S. A. (1993). Repeatability of stability statistics for grain yield in wheat. Crop Science. https://doi.org/10.2135/cropsci1993.0011183X003300040017x.

    Article  Google Scholar 

  21. Jeberson, M. S., Kant, L., Kishore, N., Rana, V., Walia, D. P., & Singh, D. (2017). AMMI and GGE biplot analysis of yield stability and adaptability of elite genotypes of bread wheat (Triticum aestivum L) for Northern Hill zone of India. International Journal of Bio-resource and Stress Management. https://doi.org/10.23910/ijbsm/2017.8.5.1838.

    Article  Google Scholar 

  22. Kang, M. S. (2002). Genotype-environment interaction: Progress and prospects. In M. S. Kang (Ed.), Quantitative genetics, genomics and plant breeding (1st ed., pp. 219–243). New York: CABI.

    Google Scholar 

  23. Kang, M. S., & Pham, H. N. (1991). Simultaneous selection for high yielding and stable crop genotypes. Agronomy Journal. https://doi.org/10.2134/agronj1991.00021962008300010037x.

    Article  Google Scholar 

  24. Kebede, A., & Getahun, A. (2017). Adaptability and stability analysis of groundnut genotypes using AMMI model and GGE-biplot. Journal of Crop Science and Biotechnology. https://doi.org/10.1007/s12892-017-0061-0.

    Article  Google Scholar 

  25. Kristensen, K., Schelde, K., & Olesen, J. E. (2010). Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science. https://doi.org/10.1017/S0021859610000675.

    Article  Google Scholar 

  26. Krupnik, T. J., Ahmed, Z. U., Timsina, J., Yasmina, S., Hossain, F., Al Mamun, A., et al. (2015). Untangling crop management and environmental influences on wheat yield variability in Bangladesh: An application of non-parametric approaches. Agricultural Systems. https://doi.org/10.1016/j.agsy.2015.05.007.

    Article  Google Scholar 

  27. Leon, J., & Becker, H. C. (1988). Repeatability of some statistical measures of phenotypic stability-Correlations between single year results and multi-year results. Plant Breeding. https://doi.org/10.1111/j.1439-0523.1988.tb00228.x.

    Article  Google Scholar 

  28. Lin, C. S., & Binns, M. R. (1988). A method of analyzing cultivar x location x year experiments: A new stability parameter. Theoretical and Applied Genetics. https://doi.org/10.1007/BF00265344.

    Article  PubMed  Google Scholar 

  29. Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability analysis: Where do we stand? Crop Science. https://doi.org/10.2135/cropsci1986.0011183X002600050012x.

    Article  Google Scholar 

  30. Marshall, D. R., Langridge, P., & Appels, R. (2001). Wheat breeding in the new century—preface. Australian Journal of Agricultural Research, 52, 1–4.

    Article  Google Scholar 

  31. Mekbib, F. (2003). Yield stability in common bean (Phaseoulus vulgaris L.) genotypes. Euphytica. https://doi.org/10.1023/a:1022878015943.

    Article  Google Scholar 

  32. Mendes, M. H. S., & Ramalho, M. A. P. (2018). Repeatability of some phenotypic stability parameters—a resampling approach. Crop Breeding and Applied Biotechnology. https://doi.org/10.1590/1984-70332018v18n2a20.

    Article  Google Scholar 

  33. Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica. https://doi.org/10.1007/s10681-007-9600-6.

    Article  Google Scholar 

  34. Mylonas, I., Stavrakoudis, D., Katsantonis, D., & Korpetis, E. (2020). Better farming practices to combat climate change. In M. Ozturk & A. Gul (Eds.), Climate change and food security with emphasis on wheat. Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-819527-7.00001-7.

    Google Scholar 

  35. Nakamoto, T., Yamagishi, J., Oyaizu, H., Funahashi, T., & Richner, W. (2002). Spatial variability patterns of wheat growth and soil properties in a small field as affected by tillage intensity. Plant Production Science. https://doi.org/10.1626/pps.5.175.

    Article  Google Scholar 

  36. Nassar, R., & Huehn, M. (1987). Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics. https://doi.org/10.2307/2531947.

    Article  Google Scholar 

  37. Nouria, M., Homaeea, M., Bannayanb, M., & Hoogenboomca, G. (2016). Towards modeling soil texture-specific sensitivity of wheat yield andwater balance to climatic changes. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2016.07.025.

    Article  Google Scholar 

  38. Nyiraneza, J., Cambouris, A. N., Ziadi, N., Tremblay, N., & Nolin, M. C. (2012). Spring wheat yield and quality related to soil texture and nitrogen fertilization. Agronomy Journal. https://doi.org/10.2134/agronj2011.0342.

    Article  Google Scholar 

  39. Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., et al. (2008). Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment. https://doi.org/10.1016/j.agee.2008.01.019.

    Article  Google Scholar 

  40. Papadopoulos, I. I., & Tokatlidis, I. S. (2011). A novel statistic estimated in the absence of competition to foresee genotype performance at the farming conditions parallels the agronomic concept of stability. Australian Journal of Crop Science, 5, 822–830.

    Google Scholar 

  41. Patanita, M., Tomaz, A., Ramos, T., Oliveira, P., Boteta, L., & Dôres, J. (2019). Water regime and nitrogen management to cope with wheat yield variability under the Mediterranean conditions of southern Portugal. Plants. https://doi.org/10.3390/plants8100429.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Payne, R. W. (2009). Genstat. Wiley Interdisciplinary Reviews: Computation Statistics. https://doi.org/10.1002/wics.32.

    Article  Google Scholar 

  43. Purchase, J. L., Hatting, H., & Van Deventer, C. S. (2000). Genotype x environment interaction of winter wheat in south Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil. https://doi.org/10.1080/02571862.2000.10634878.

    Article  Google Scholar 

  44. Rakshit, S., Ganapathy, K. N., Gomashe, S. S., Rathore, A., Ghorade, R. B., Nagesh Kumar, M. V., et al. (2012). GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica. https://doi.org/10.1007/s10681-012-0648-6.

    Article  Google Scholar 

  45. Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., et al. (2012). Achieving yield gains in wheat. Plant, Cell and Environment. https://doi.org/10.1111/j.1365-3040.2012.02588.x.

    Article  PubMed  Google Scholar 

  46. Romagosa, I., & Fox, P. N. (1993). Genotype x environment interaction and adaptation. In M. D. Hayward, N. O. Bosemark, & I. Romagosa (Eds.), Plant breeding: Principles and prospects (pp. 373–390). London, UK: Chapman and Hall.

    Google Scholar 

  47. Sabaghnia, N., Dehghani, H., Alizadeh, B., & Mohghaddam, M. (2010). Diallele analysis of oil content and some agronomic traits in rapeseed (Brassica napus L.) based on the additive-dominance genetic model. Australian Journal of Crop Science, 4, 609–616.

    Google Scholar 

  48. Sabaghnia, N., Dehghani, H., & Sabaghpour, S. H. (2006). Nonparametric methods for interpreting genotype x environment interaction of lentil genotypes. Crop Science. https://doi.org/10.2135/cropsci2005.06-0122.

    Article  Google Scholar 

  49. Schauberger, B., Ben-Ari, T., Makowski, D., Kato, T., Kato, H., & Ciais, P. (2018). Yield trends, variability and stagnation analysis of major crops in France over more than a century. Scientific Reports. https://doi.org/10.1038/s41598-018-35351-1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shukla, G. K. (1972). Some statistical aspects of partitioning genotype- environmental components of variability. Heredity. https://doi.org/10.1038/hdy.1972.87.

    Article  PubMed  Google Scholar 

  51. Smutná, P., & Tokatlidis, I. S. (2020). The influence of different soil types on rainfed wheat varieties for grain and protein yield. Cereal Research Communications. https://doi.org/10.1007/s42976-020-00042-z.

    Article  Google Scholar 

  52. Solomon, K. F., Smit, H. A., Malan, E., & Du Toit, W. J. (2007). Comparison study using rank based nonparametric stability statistics of durum wheat. World Journal of Agricultural Science, 3, 444–450.

    Google Scholar 

  53. Thapa, D. B., Sharma, R. C., Mudwari, A., Ortiz-Ferrara, G., Sharma, S., Basnet, R. K., et al. (2009). Identifying superior wheat cultivars in participatory research on resource poor farms. Field Crops Research. https://doi.org/10.1016/j.fcr.2009.01.011.

    Article  Google Scholar 

  54. Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Ph.D. Thesis. P.J. School, IARI, New Delhi, India.

  55. Tokatlidis, I. S. (2014). Addressing the yield by density interaction is a prerequisite to bridge the yield gap of rainfed wheat. Annals of Applied Biology. https://doi.org/10.1111/aab.12121.

    Article  Google Scholar 

  56. Tokatlidis, I. S. (2017). Crop adaptation to density to optimise grain yield: Breeding implications. Euphytica. https://doi.org/10.1007/s10681-017-1874-8.

    Article  Google Scholar 

  57. Wong, M. T. F., & Asseng, S. (2006). Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model. Plant and Soil. https://doi.org/10.1007/s11104-006-0012-5.

    Article  Google Scholar 

  58. Yan, W. (2001). GGEbiplot—a Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal. https://doi.org/10.2134/agronj2001.9351111x.

    Article  Google Scholar 

  59. Yan, W. (2002). Singular-value partition in biplot analysis of multienvironment trial data. Agronomy Journal. https://doi.org/10.2134/agronj2002.9900.

    Article  Google Scholar 

  60. Yan, W., Hunt, L., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based onthe GGE biplot. Crop Science. https://doi.org/10.2135/cropsci2000.403597x.

    Article  Google Scholar 

  61. Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science. https://doi.org/10.2135/cropsci2006.06.0374.

    Article  Google Scholar 

  62. Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science. https://doi.org/10.4141/P05-169.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Agency for Agricultural Research, Czech Republic (Project QK1910269).

Author information

Affiliations

Authors

Contributions

PS designed and performed the study and collected the data. PS and IT interpreted the results. IM and IT performed the statistical analysis and prepared the figures and Tables. IT wrote the manuscript. PS, IM and IT made the review and editing.

Corresponding author

Correspondence to Ioannis S. Tokatlidis.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smutná, P., Mylonas, I. & Tokatlidis, I.S. The Use of Stability Statistics to Analyze Genotype × Environments Interaction in Rainfed Wheat Under Diverse Agroecosystems. Int. J. Plant Prod. (2021). https://doi.org/10.1007/s42106-020-00126-0

Download citation

Keywords

  • Agronomic stability
  • Crossover genotype rank
  • Environmental diversity
  • Genotype adaptability
  • Static stability