Sewage Sludge Impacts on Yields, Nutrients and Heavy Metals Contents in Pearl Millet–Wheat System Grown Under Saline Environment

Abstract

Salinity prompts heavy metals accumulation and adversely affects nutrient contents in soil and plants, thereby reducing crop yields. The assessment of domestic sewage sludge (SS) under saline conditions to boost crop productivity has become crucial. A field trial was conducted for two consecutive years (2017–2019) with three irrigation levels [canal water (0.35 dS m−1), I1; 8 dS m−1, I2; and 10 dS m−1 saline water, I3]; and five fertilization levels [control, F1; SS (5 t ha−1), F2; SS (5 t ha−1) + 50% RDF, F3; SS (5 t ha−1) + 75% RDF, F4; and RDF, F5]. The results revealed that treatment I3 (10 dS m−1) reduced the grain yield of pearl millet and wheat by an average of 31.2 and 32.6%, respectively, compared to I1 (0.35 dS m−1). However, among fertilizer treatments, F5 obtained significant highest grain and straw yields statistically at par with F4 treatment. Also, in the context of nutrients content in crops, a similar trend has been reported. In the addition, with the usage of saline irrigation (EC 8 and 10 dS m−1) and SS (5 t ha−1), the availability of heavy metals in crops and soil had increased (p = 0.05). The soluble ions in soil increased with increasing salinity levels of irrigation water. The extractability series of heavy metals were: Pb > Co > Ni > Cr > Cd. The addition of SS, however, recorded a higher concentration of DTPA-extractable metals in soil over control. The heavy metals content did not exceed toxicity levels in soil and plants. Hence, the incorporation of SS (5 t ha−1) resulted in saving 25% mineral fertilizers and, also combined use of SS with mineral fertilizers proved to be economically beneficial for crop production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmed, H. K., Fawy, H. A., & Abdel-Hady, E. S. (2010). Study of sewage sludge use in agriculture and its effect on plant and soil. Agriculture and Biology Journal of North America, 1(5), 1044–1049.

    CAS  Article  Google Scholar 

  2. Amor, Z. H., Hashemi, H., & Buri, S. (2018). The consequences of saline irrigation treatments on soil physicochemical characteristics. Euro-Mediterranean Journal for Environmental Integration. https://doi.org/10.1007/s41207-018-0064-y.

    Article  Google Scholar 

  3. Balik, J., Pavlíkova, D., Vanek, V., Kulhanek, M., & Kotkova, B. (2007). The influence of long-term sewage sludge application on the activity of phosphatases in the rhizosphere of plants. Plant, Soil and Environment, 53, 375–381.

    CAS  Article  Google Scholar 

  4. Bedwal, S. (2019). Effect of sewage sludge and inorganic fertilizers on productivity and fertility of soil under cotton-wheat cropping system. M.Sc Thesis in Department of Soil Science, College of Agriculture, CCS HAU, Hisar, India.

  5. Bekmirzaev, G., Ouddane, B., Beltrao, J., & Fujii, Y. (2020). The impact of salt concentration on the mineral nutrition of Tetragonia tetragonioides. Agriculture, 10(6), 238.

    Article  Google Scholar 

  6. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  7. Casova, K., Cerny, J., Szakova, J., Balik, J., & Tlustos, P. (2009). Cadmium balance in soils under different fertilization managements including sewage sludge application. Plant, Soil and Environment, 55, 353–361.

    CAS  Article  Google Scholar 

  8. Chakraborty, K., Sairam, R. K., & Bhaduri, D. (2015). Effects of different levels of soil salinity on yield attributes, accumulation of nitrogen and micronutrients in Brasscia spp. Journal of Plant Nutrition. https://doi.org/10.1080/01904167.2015.1109105.

    Article  Google Scholar 

  9. Chesnin, L., & Yien, C. H. (1950). Turbidimetric determination of available sulphates. Soil Science Society of American Journal, 15, 149–151.

    Article  Google Scholar 

  10. Chitdeshwari, T., Savithri, P., & Mahimai Raj, S. (2002). Effect of sewage biosolids compost on biomass yield of amaranthus and heavy metal availability. Journal of Indian Society of Soil Science, 50(4), 480–484.

    Google Scholar 

  11. Delibacak, S., & Ongun, A. R. (2016). Influence of treated sewage sludge applications on corn and second crop wheat yield and some properties of sandy clay soil. Turkish Journal of Field Crops, 21, 1–9.

    Article  Google Scholar 

  12. Diacono, M., & Montemurro, F. (2015). Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture, 5(2), 221–230.

    Article  Google Scholar 

  13. Ding, Z., Kheir, A. M., Ali, M. G., Ali, O. A., Abdelaal, A. I., Zhou, Z., et al. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports, 10(1), 1–13.

    Article  CAS  Google Scholar 

  14. Du Laing, G., De Grauwe, P., Moors, W., Vandecasteele, B., Lesage, E., Meers, E., et al. (2007). Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt. Journal of Environmental Monitoring, 9, 449–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060.

    CAS  Article  Google Scholar 

  16. Frost, H. L., & Ketchum, H. (2000). Trace metal concentration in durum wheat from application of sewage sludge and commercial fertilizer. Advanced Environmental Research, 4, 347–355.

    Article  Google Scholar 

  17. Ghallab, A., & Usman, A. R. A. (2007). Effect of sodium chloride-induced salinity on phyto-availability and speciation of Cd in soil solution. Water, Air, and Soil Pollution, 185(1–4), 43–51.

    CAS  Article  Google Scholar 

  18. Hu, Y., Fricke, W., & Schmidhalter, U. (2005). Salinity and the growth of non-halophytic grass leaves: The role of mineral nutrient distribution. Functional Plant Biology, 32, 973–985.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Hu, B., Jia, X., Hu, J., Xu, D., Xia, F., Yan, L., et al. (2017). Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 14(9), 1042.

    Article  CAS  Google Scholar 

  20. Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.

    Google Scholar 

  21. Jastrzebska, M., Kostrzewska, M., Treder, K., Makowski, P., Saeid, A., Jastrzębski, W., et al. (2018). Fertiliser from sewage sludge ash instead of conventional phosphorus fertilisers? Plant, Soil and Environment, 64, 504–511.

    CAS  Article  Google Scholar 

  22. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed., p. 365). Boca Raton: CRC Press.

    Google Scholar 

  23. Kadkhodaie, A., Kelich, S., & Baghbani, A. (2012). Effect of salinity levels on heavy metals (Cd, Pb and Ni) absorption by sunflower and sudangrass plants. Bulletin of Environment, Pharmacology and Life Sciences, 1(12), 47–53.

    Google Scholar 

  24. Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., et al. (2016). Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7, 2257–2271.

    CAS  Article  Google Scholar 

  25. Khoshgoftar, A. H., Shariatmadari, H., Karimian, N., Kalbasi, M., van der Zee, S. E. A. T. M., Parker, D. R., et al. (2004). Salinity and zinc application effects on phyto-availability of cadmium and zinc. Soil Science Society of America Journal, 68(6), 1885–1889.

    CAS  Article  Google Scholar 

  26. Latare, A. M., Kumar, O., Singh, S. K., & Gupta, A. (2014). Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecological Engineering, 69, 17–24.

    Article  Google Scholar 

  27. Latare, A. M., & Singh, S. K. (2013). Effect of sewage sludge and fertilizers application on accumulation of heavy metals and yield of rice (Oryza sativa L.) in an Inceptisol of Varanasi. Journal of the Indian Society of Soil Science, 61(3), 219–225.

    Google Scholar 

  28. Lindsay, W. L., & Norwell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    CAS  Article  Google Scholar 

  29. Liu, X., Til, F., Shao, L., Sun, H., & Zhang, X. (2016). Effect of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North china. Journal of Integrative Agriculture, 15(12), 2886–2898.

    CAS  Article  Google Scholar 

  30. Mahdy, A. M., Elkhatib, E. A., & Fathi, N. O. (2007). Cadmium, copper, nickel, and lead availability in biosolids-amended alkaline soils. Australian Journal of Basic and Applied Sciences, 1(4), 354–363.

    CAS  Google Scholar 

  31. Manchanda, G., & Neera, G. (2008). Salinity and its effects on the functional biology of legumes. Acta Physiologie Plantarum, 30, 595–618.

    CAS  Article  Google Scholar 

  32. McGrath, S. P., Zhao, F. J., Dunham, S. J., Crosland, A. R., & Coleman, K. (2000). Long term changes in extractability and bioavailability of zinc and cadmium after sludge application. Journal of Environmental Quality, 29, 875–883.

    CAS  Article  Google Scholar 

  33. Meena, M. C., & Patel, K. P. (2018). Effect of long term application of sewage sludge and farmyard manure on soil properties under mustard-based cropping system. Journal of Oilseed Brassica, 9(2), 96–103.

    Google Scholar 

  34. Mtshali, J. S., Tiruneh, A. T., & Fadiran, A. O. (2014). Characterization of sewage sludge generated from wastewater treatment plants in Swaziland in relation to agricultural uses. Resources and Environment, 4, 190–199.

    Google Scholar 

  35. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular 939. Washington D.C, US: Government Printing Office.

    Google Scholar 

  36. Petersen, S. O., Henriksen, K., Mortensen, G. K., Krogh, P. H., Brandt, K. K., Sorensen, J., et al. (2003). Recycling of sewage sludge and household compost to arable land: Fate and effects of organic contaminants and impact on soil fertility. Soil and Tillage Research, 72, 139–152.

    Article  Google Scholar 

  37. Phogat, V., Satyavan, & Shrama, S. K. (2011). Effects of cyclic and blending uses of saline and good quality water on soil salinization and crop yields under pearl millet-wheat rotation. Journal of Indian Society of Soil Science, 59, 1–3.

    Google Scholar 

  38. Prashnathi, B., Billa, S. K., Subbaiah, P. V., & BabuBabu, M. (2020). Impact of saline water on growth, yield, quality, nutrient uptake in various crops: A review. International Journal of Chemical Studies, 8(2), 2344–2347.

    Article  CAS  Google Scholar 

  39. Ragab, A. A. M., Hellal, F. A., & Abd El-Hady, E. (2008). Water salinity impacts on some soil properties and nutrients uptake by wheat plants in sandy and calcareous soil. Australian Journal of Basic and Applied Sciences, 2(2), 225–233.

    CAS  Google Scholar 

  40. Rajput, R., Prasad, G., & Chopra, A. K. (2009). Scenario of solid waste management in present India context. Caspian Journal of Environmental Science, 7(1), 45–53.

    Google Scholar 

  41. Richard, L. A. (1954). Diagnosis and improvement of saline and alkaline soils. USDA Handbook Number 60, Washington, D. C. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. Circulars USDA. pp. 939.

  42. Romanos, D., Nemer, N., Khairallah, Y., & Abi Saab, M. T. (2019). Assessing the quality of sewage sludge as an agricultural soil amendment in Mediterranean habitats. International Journal of Recycling of Organic Waste in Agriculture, 8(1), 377–383.

    Article  Google Scholar 

  43. Roy, T., Singh, R. D., Biswas, D. R., & Patra, A. K. (2013). Effect of sewage sludge and inorganic fertilizers on productivity and micronutrients accumulation by palak and their availability in a Typic Haplustept. Journal of the Indian Society of Soil Science, 61(3), 207–218.

    Google Scholar 

  44. Salih, H. O., & Kia, D. R. (2013). Effect of salinity of irrigation water on cowpea growth. Journal of Agriculture and Veterinary Science, 6(3), 37–41.

    Google Scholar 

  45. Sanchez, M. E., Estrada, I. B., Martinez, O., Martin-Villacorta, J., Aller, A., Moran, A., et al. (2004). Influence of the application of sewage sludge on the degradation of pesticides in the soil. Chemosphere, 57, 673–679.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Sharma, S., & Dhaliwal, S. S. (2019). Effect of sewage sludge and rice straw compost on yield, micronutrient availability and soil quality under rice-wheat system. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2019.1648489.

    Article  Google Scholar 

  47. Sharma, B. R., & Minhas, P. S. (2006). Strategies for management saline/alkali waters for sustainable agricultural production in South Asia. Agricultural Water Management, 78, 136–151.

    Article  Google Scholar 

  48. Sharma, S., Thind, H. S., Singh, Y., Singh, V., & Singh, B. (2015). Soil enzyme activities with biomass ashes and phosphorus fertilization to rice-wheat cropping system in the Indo-Gangetic plains of India. Nutrient Cycling in Agroecosystems, 101, 391–400. https://doi.org/10.1007/s10705-015-9684-7.

    CAS  Article  Google Scholar 

  49. Sheoran, O. P., Tonk, D. S., Kaushik, L. S., Hasija, R. C., & Pannu, R. S. (1998). Statistical software package for agricultural research workers. In D. S. Hooda & R. C. Hasija (Eds.), Recent advances in information theory, statistics & computer applications (pp. 139–143). Hisar: Department of Mathematics Statistics, CCS HAU.

    Google Scholar 

  50. Shrivanivasrao, L. H., Benzioni, A. E., & Waisel, Y. (2004). Effect of salinity on root morphology and nutrient acquisition by fababean (Viciafaba L.). Journal of the Indian Society of Soil Science, 52, 184–191.

    Google Scholar 

  51. Snell, F. D., & Snell, C. T. (1959). Colorimetric methods of analysis (3rd ed., Vol. IID). New York: Van Nostrand Inc.

    Google Scholar 

  52. Subbiah, B., & Asija, G. L. (1956). Alkaline permanganate method of available nitrogen determination. Current Science, 25, 259.

    CAS  Google Scholar 

  53. Swain, A., Singh, S., Mohapatra, K., & Patra, A. (2020). Effect of sewage sludge application on yield, nutrients uptake and nutrient use efficiency of spinach (Spinacia oleracea L.). Annals of Plant and Soil Research, 22(3), 305–309.

    Google Scholar 

  54. Tanhan, P., Kruatrachue, M., Pokethitiyook, P., & Chaiyarat, R. (2007). Uptake and accumulation of cadmium, lead and zinc by siam weed. Chemosphere, 69, 323–332.

    Article  CAS  Google Scholar 

  55. Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botony, 91, 503–527.

    CAS  Article  Google Scholar 

  56. Todd, D. K. (1980). Groundwater hydrology (2nd ed.). New York: Wiley.

    Google Scholar 

  57. Usman, A. R. A. (2015). Influence of NaCl induced salinity and Cd toxicity on respiration activity and Cd availability to barley plants in FYM-amended soil. Applied and Environmental Soil Science. https://doi.org/10.1155/2015/483836.

    Article  Google Scholar 

  58. Usman, K., Khan, S., Ghulam, S., Khan, M. U., Khan, N., Khan, M. A., et al. (2012). Sewage sudge: An important biological resource for sustainable agriculture and its environmental implications. American Journal of Plant Sciences, 3, 1708–1721.

    Article  Google Scholar 

  59. Usman, A. R. A., Kuzyakov, Y., & Stahr, K. (2005). Effect of immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge-contaminated soil. Soil and Sediment Contamination, 14(4), 329–344.

    CAS  Article  Google Scholar 

  60. Verma, A. K., Singh, R. D., Yadav, B., Meena, R. K., & Kumawat, C. (2017). Effect of sludge addition on biological properties of soil under rice cultivation. International Journal of Current Microbiology and Applied Sciences, 6(5), 2677–2683.

    CAS  Article  Google Scholar 

  61. Walkley, A., & Black, C. A. (1934). Estimation of organic carbon by chromic acid and titration method. Soil Science, 37, 28–29.

    Article  Google Scholar 

  62. WHO. (2007). Joint FAO/WHO Expert standards program codex Alimentation Commission. Geneva, Switzerland. Retrieved from: http://www.who.int. Accessed 31 Mar 2020.

  63. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., et al. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Soil Science, College of Agriculture, CCS Haryana Agricultural University, Hisar (Haryana) for providing the necessary facilities. Authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ankush.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ankush, Prakash, R., Singh, V. et al. Sewage Sludge Impacts on Yields, Nutrients and Heavy Metals Contents in Pearl Millet–Wheat System Grown Under Saline Environment. Int. J. Plant Prod. (2020). https://doi.org/10.1007/s42106-020-00122-4

Download citation

Keywords

  • Sewage sludge
  • Salinity
  • Yields
  • Nutrient contents
  • Heavy metals