Quantification of Climate Warming and Crop Management Impacts on Phenology of Pulses-Based Cropping Systems

Abstract

Climate warming is impacting the phenology, growth and productivity of diverse cropping systems at local, regional and global levels. Long-term observed chickpea-mungbean system (CMS) phenological changes were used for the determination of the relationship between crop practices, climate warming and phenology for the making strategies for CMS to minimize negative climate change impacts. Observed thermal trend from sowing to maturity was ranging from 0.82 to 1.15 °C decade−1 for chickpea and 0.64 to 0.97 °C decade−1 for mungbean during 1980–2018. Observed chickpea phenology stages was earlier for mean value of 7.04 (sowing; S), 6.76 (emergence; E), 4.31 (anthesis; A), 2.15 (maturity; M) days decade−1, whereas chickpea phases were decreased averagely 2.73 (S–A), 2.16 (A–M), 4.89 (S–M) days decade−1. Mungbean, ‘S’ 6.24, ‘E’ 5.97, ‘A’ 3.76, and ‘M’ 2.01 days decade−1 were occurred earlier. Period of mungbean phenology phases were lessened with averaged 2.45 (S–A), 1.76 (S–M) and 4.23 (A–M) days decade−1, respectively. Phenological stages and phases of both crops chickpea and mungbean correlated negatively with rising temperatures at all sites studied. By using CROPGRO-Chickpea and CROPGRO-Legume models for usual chickpea and mungbean cultivars at the sites for 38 years duration indicated that model predicted phenology stages were accelerated with thermal trend more as compared with observed stages. This showed that, during last decades, growing newly evolved cultivars of pulses having more thermal time requirement have significantly offset the increased temperature induced changes in chickpea (33%) and mungbean (20%) phenology. Therefore, for the mitigation of climate warming influences, newly evolved cultivars for CMS must be familiarized that need greater demand for degree days and having higher tolerance to temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., et al. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247, 42–55.

    Google Scholar 

  2. Ahmad, A., Ashfaq, M., Rasul, G., Wajid, S. A., Khaliq, T., Rasul, F., et al. (2015). Impact of climate change on the rice–wheat cropping system of Pakistan. In D. Hillel & C. Rosenzweig (Eds.), Handbook of climate change and agro-ecosystems (pp. 219–258). London: Imperial College Press.

    Google Scholar 

  3. Ahmad, S., Abbas, G., Ahmed, M., Fatima, Z., Anjum, M. A., Rasul, G., et al. (2019). Climate warming and management impact on the change of rice–wheat phenology in Punjab, Pakistan. Field Crops Research, 230, 46–61.

    Google Scholar 

  4. Ahmad, S., Abbas, G., Fatima, Z., Khan, R. J., Anjum, M. A., Ahmed, M., et al. (2017a). Quantification of the impacts of climate warming and crop management on canola phenology in Punjab, Pakistan. Journal of Agronomy and Crop Science, 203, 442–452.

    Google Scholar 

  5. Ahmad, S., Abbas, Q., Abbas, G., Fatima, Z., Atique-ur-Rehman, Nab, S., Younis, H., et al. (2017b). Quantification of climate warming and crop management impacts on cotton phenology. Plants, 6(1), 1–16.

    Google Scholar 

  6. Ahmad, S., Nadeem, M., Abbas, G., Fatima, Z., Khan, R. J. Z., Ahmed, M., et al. (2016). Quantification of the effects of climate warming and crop management on sugarcane phenology. Climate Research, 71, 47–61.

    Google Scholar 

  7. Ahmed, I., Ullah, A., Rahman, M. H., Ahmad, B., Wajid, S. A., Ahmad, A., et al. (2019). Climate change impacts and adaptation strategies for agronomic crops. In S. Hussain (Ed.), Climate change and agriculture. London: INTECH Publishers.

    Google Scholar 

  8. Ahmed, M., & Ahmad, S. (2019). Carbon dioxide enrichment and crop productivity. In M. Hasanuzzaman (Ed.), Agronomic crops (pp. 31–46). Singapore: Springer.

    Google Scholar 

  9. Amin, A., Nasim, W., Mubeen, M., Sarwar, S., Urich, P., Ahmad, A., et al. (2018). Regional climate assessment for temperature and precipitation in Southern Punjab (Pakistan) using SimCLIM climate model for different temporal scales. Theoretical and Applied Climatology, 131, 121–131.

    Google Scholar 

  10. Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997–1012.

    Google Scholar 

  11. Biswas, J. C., Kalra, N., Maniruzzaman, M., Choudhury, A. K., Jahan, M. A. H. S., Hossain, M. B., Ishtiaque, S., Haque, M. M., & Kabir, W. (2018). Development of mungbean model (MungGro) and its application for climate change impact analysis in Bangladesh. Ecological Modelling, 384, 1–9.

    CAS  Google Scholar 

  12. Bokhari, S. A. A., Rasul, G., Ruane, A. C., Hoogenboom, G., & Ahmad, A. (2017). The past and future changes in climate of the rice–wheat cropping zone in Punjab, Pakistan. Pakistan Journal of Meteorology, 13(26), 9–23.

    Google Scholar 

  13. Brown, M. E., De Beurs, K. M., & Marshall, M. (2012). Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sensing Environment, 126, 174–183.

    Google Scholar 

  14. Chmielewski, F.-M., Muller, A., & Bruns, E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agriculture and Forest Meteorology, 121(1–2), 69–78.

    Google Scholar 

  15. Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends Ecology Evolution, 22, 357–365.

    PubMed  Google Scholar 

  16. Ellwood, E., Diez, J., Ibãnez, I., Primack, R., Kobori, H., Higuchi, H., & Silander, J., (2012). Disentangling the paradox of insect phenology: Are temporal trends reflecting the response to warming? Oecologia, 168, 1161–1171.

    PubMed  Google Scholar 

  17. Estrella, N., Sparks, T. H., & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 13, 1737–1747.

    Google Scholar 

  18. Hasanuzzaman, M., Nahar, K., Alam, M. M., Ahmad, S., & Fujita, M. (2015). Exogenous application of phytoprotectants in legumes against environmental stress. In M. M. Azooz & P. Ahmad (Eds.), Legumes under environmental stress: Yield, improvement and adaptations (pp. 161–198). New York: Wiley.

    Google Scholar 

  19. Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., et al. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103, 351–370.

    Google Scholar 

  20. He, L., Asseng, S., Zhao, G., Wu, D., Yang, X., Zhuang, W., et al. (2015). Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agriculture and Forest Meteorology, 200, 135–143.

    Google Scholar 

  21. Hoffmann, A. A., & Sgro, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479–485.

    CAS  PubMed  Google Scholar 

  22. Hoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U., White, J. W., Hunt, L. A., Ogoshi, R., Lizaso, J. I., Koo, J., Asseng, S., Singels, A., Moreno, L. P., Jones, J. W. (2019). Decision support system for agrotechnology transfer (DSSAT), Version 4.7.5 (https://dssat.net), DSSAT Foundation, Gainesville, Florida, USA.

  23. Hu, Q., Weiss, A., Feng, S., & Baenziger, P.S. (2005). Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agricultural and Forest Meteorology, 135(1–4), 284–290.

    Google Scholar 

  24. Ijaz, M., Nawaz, A., Ul-Allah, S., Rizwan, M. S., Ullah, A., Hussain, M., et al. (2019a). Crop diversification and food security. In M. Hasanuzzaman (Ed.), Agronomic crops (pp. 607–621). Singapore: Springer.

    Google Scholar 

  25. Ijaz, M., Rehman, A., Mazhar, K., Fatima, A., Ul-Allah, S., Ali, Q., et al. (2019b). Crop production under changing climate: Past, present and future. In M. Hasanuzzaman (Ed.), Agronomic crops (pp. 149–173). Singapore: Springer.

    Google Scholar 

  26. IPCC. (2014). Climate change 2014. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Impacts, adaptation and vulnerability contribution of working group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  27. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265.

    Google Scholar 

  28. Karande, B. I., Patel, H. R., Yadav, S. B., Vasani, M. J., & Patil, D. D. (2018). Impact of projected climate change on summer mungbean in Gujarat. International Journal of Current Microbiology and Applied Sciences, 7(08), 4178–4189.

    CAS  Google Scholar 

  29. Kariyeva, J., Willem, J. D., van Leeuwen, W. J. D., & Woodhouse, C. A. (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981–2008). Frontiers in Earth Science, 6(2), 206–225.

    Google Scholar 

  30. Li, K., Yang, X., Tian, H., Pan, S., Liu, Z., & Lu, S. (2016). Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. International Journal of Biometeorology, 60(1), 21–32.

    PubMed  Google Scholar 

  31. Li, Z., Yang, P., Tang, H., Wu, W., Yin, H., Liu, Z., et al. (2014). Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Regional Environmental Change, 14(1), 39–48.

    CAS  Google Scholar 

  32. Linderholm, H. W. (2006). Growing season changes in the last century. Agricultural and Forest Meteorology, 137(1–2), 1–14.

    Google Scholar 

  33. Liu, Y., Chen, Q., Ge, Q., Dai, J., Qin, Y., Dai, L., et al. (2018). Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agriculture and Forest Meteorology, 248, 518–526.

    Google Scholar 

  34. Liu, Z., Hubbard, K. G., Lin, X., & Yang, X. (2013). Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, 19(11), 3481–3492.

    PubMed  Google Scholar 

  35. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969–1976.

    Google Scholar 

  36. Naz, S., Fatima, Z., Iqbal, P., Khan, A., Zakir, I., Noreen, S., et al. (2019). Agronomic crops: Types and uses. In M. Hasanuzzaman (Ed.), Agronomic crops (pp. 1–18). Singapore: Springer.

    Google Scholar 

  37. Rasul, G., Mahmood, A., Sadiq, A., & Khan, S. I. (2012). Vulnerability of the Indus delta to climate change in Pakistan. Pakistan Journal of Meteorology, 8(16), 89–107.

    Google Scholar 

  38. Rezaei, E. E., Siebert, S., & Ewert, F. (2015). Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environment Research Letters, 10, 24012.

    Google Scholar 

  39. Robertson, M. J., Carberry, P. S., Huth, N. I., Turpin, J. E., Probert, M. E., Poulton, P. L., Bell, M., Wright, G. C., Yeates, S. J., & Brinsmead, R. B. (2002). Simulation of growth and development of diverse legume species in APSIM. Australian Journal of Agricultural Research, 53(4), 429.

    Google Scholar 

  40. Robertson, M. J., Carberry, P. S., & Lucy, M. (2000). Evaluation of a new cropping option using a participatory approach with on-farm monitoring and simulation: a case study of spring-sown mungbeans. Australian Journal of Agricultural Research, 51(1), 1.

    Google Scholar 

  41. Roetzer, T., Wittenzeller, M., Haeckel, H., & Nekovar, J. (2000). Phenology in central Europe—differences and trends of spring phenophases in urban and rural areas. International Journal of Biometeorology, 44, 60–66.

    CAS  PubMed  Google Scholar 

  42. Sacks, W. J., & Kucharik, C. J. (2011). Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agriculture and Forest Meteorology, 151(7), 882–894.

    Google Scholar 

  43. Siebert, S., & Ewert, F. (2012). Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agriculture and Forest Meteorology, 152, 44–57.

    Google Scholar 

  44. Soltani, A., Robertson, M. J., Mohammad-Nejad, Y., & Rahemi-Karizaki, A. (2006). Modeling chickpea growth and development: Leaf production and senescence. Field Crops Research, 99, 14–23.

    Google Scholar 

  45. Soltani, A., & Sinclair, T. R. (2011). A simple model for chickpea development, growth and yield. Field Crops Research, 124, 252–260.

    Google Scholar 

  46. Tao, F., Zhang, S., & Zhang, Z. (2012). Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. European Journal of Agronomy, 43, 201–212.

    Google Scholar 

  47. Tao, F., Zhang, Z., Shi, W., Liu, Y., Xiao, D., Zhang, S., et al. (2013). Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite. Global Change Biology, 19(10), 3200–3209.

    PubMed  Google Scholar 

  48. Tariq, M., Ahmad, S., Fahad, S., Abbas, G., Hussain, S., Fatima, Z., et al. (2018). The impact of climate warming and crop management on phenology of sunflower-based cropping systems in Punjab, Pakistan. Agriculture and Forest Meteorology, 256, 270–282.

    Google Scholar 

  49. Tariq, M., Ali, H., Hussain, N., Nasim, W., Mubeen, M., Ahmad, S., et al. (2019). Fundamentals of crop rotation in agronomic management. In M. Hasanuzzaman (Ed.), Agronomic crops (pp. 545–559). Singapore: Springer.

    Google Scholar 

  50. van Ogtrop, F., Ahmad, M., & Moeller, C. (2014). Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications, 21(2), 431–443.

    Google Scholar 

  51. Xiao, D., Qi, Y., Shen, Y., Tao, F., Moiwo, J. P., Liu, J., et al. (2016). Impact of warming climate and cultivar change on maize phenology in the last 3 decades in North China Plain. Theoretical and Applied Climatology, 124(3), 653–661.

    Google Scholar 

  52. Zhao, G., Bryan, B. A., & Song, X. (2014). Sensitivity and uncertainty analysis of the APSIM wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modeling, 279, 1–11.

    CAS  Google Scholar 

  53. Zia-ul-Haq, M., Ahmad, M., Iqbal, S., Ahmad, S., & Ali, H. (2007a). Characterization and compositional studies of oil from seeds of desi chickpea (Cicer arietinum L.) cultivars grown in Pakistan. Journal of American Oil and Chemist Society, 84, 1143–1148.

    CAS  Google Scholar 

  54. Zia-ul-Haq, M., Ahmad, S., Ahmad, M., Iqbal, S., & Khawar, K. M. (2009). Effects of cultivar and row spacing on tocopherol and sterol composition of chickpea (Cicer arietinum L.) seed oil. Tarim Bilimleri Dergisi, 15(1), 25–30.

    Google Scholar 

  55. Zia-Ul-Haq, M., Amarowicz, R., Ahmad, S., Qayum, M., & Ercisli, S. (2013). Antioxidant potential of mungbean cultivars commonly consumed in Pakistan. Oxidation Communications, 36(1), 15–25.

    CAS  Google Scholar 

  56. Zia-ul-Haq, M., Iqbal, S., Ahmad, S., Bhanger, M. I., Wiezkowski, W., & Amarowicz, R. (2008). Antioxidant potential of desi chickpea varieties commonly consumed in Pakistan. Journal of Food Lipids/Biochemistry, 15, 326–342.

    CAS  Google Scholar 

  57. Zia-ul-Haq, M., Iqbal, S., Ahmad, S., Imran, M., Niaz, A., & Bhanger, M. I. (2007b). Nutritional and compositional study of desi chickpea (Cicer arietinum L.) cultivars grown in Punjab, Pakistan. Food Chemistry, 105, 1357–1363.

    CAS  Google Scholar 

  58. Zia-Ul-Haq, M., Khan, B. A., Landa, P., Kutil, Z., Ahmed, S., Qayum, M., et al. (2012). Platelet aggregation and anti-inflammatory effects of garden pea, desi chıckpea and kabuli chickpea. Acta Poloniae Pharmaceutica-Drug Research, 69(4), 707–711.

    CAS  Google Scholar 

Download references

Funding

The work was supported by Higher Education Commission (HEC) (Grant no. NRPU-6951), Islamabad.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad.

Ethics declarations

Conflict of interest

Authors did not have any conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fatima, Z., Atique-ur-Rehman, Abbas, G. et al. Quantification of Climate Warming and Crop Management Impacts on Phenology of Pulses-Based Cropping Systems. Int. J. Plant Prod. (2020). https://doi.org/10.1007/s42106-020-00112-6

Download citation

Keywords

  • CROPGRO-Chickpea and CROPGRO-Legume models
  • Climate change
  • Phenological phases and stages
  • Climate warming trends